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Abstract: Let G be a graph of order n. For graph to be Hamiltonian beginning with Dirac’s
classic result (Proc.London Math.Soc.2 (1952), 69-81), Dirac’s Theorem was followed by that of Ore
( Amer.Math.Monthly 67(1960),55 ). In 1971 Bondy considered Ore condition: d(x) + d(y) ≥ n
for pancyclic and proved that if d(x) + d(y) ≥ n for every pair of nonadjacent vertices x, y, then
G is pancyclic or G ∈ Kn/2,n/2 ( J.Combin.Theory Ser.B 11(1971), 80-84 ). In 1985 Ainouche and
Christofides considered d(x) + d(y) ≥ n − 1 for Hamiltonian and obtained that if d(x) + d(y) ≥
n − 1 for every pair of nonadjacent vertices x, y, then G is Hamiltonian or KC

(n+1)/2 ∨ G(n−1)/2

( J. London Math.Soc. 32, 385-391 ). In 1994 Aldred, Holton and Zhang studied pancyclic and
proved that if d(x) + d(y) ≥ n− 1 for every pair of nonadjacent vertices x, y, then G is pancyclic or
G ∈ {KC

(n+1)/2 ∨G(n−1)/2,Kn/2,n/2} ( Discrete Math.127,23-29 ). In this note we investigate vertex-
pancyclic and obtain that if d(x) + d(y) ≥ n − 1 for every pair of nonadjacent vertices x, y, then G
is vertex 4-pancyclic or G ∈ {KC

(n+1)/2 ∨G(n−1)/2,Kn/2,n/2,K
c
2 ∨ (K1 ∪Kn−3),K1 ∨K1

3 : Kn−4, }.
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1 Introduction

We consider finite, undirected, and simple graph G with the vertex set V (G) and the edge set E(G).
The complete graph of order n is denoted by Kn and the empty graph of order n is denoted by KC

n .
The complete bipartite graph with the partite sets A and B with |A| = p and |B| = q is denoted
by Kp,q. We denote by δ(G) ( or δ ) the minimum degree. If H and S are subsets of V (G) or
subgraphs of G, we denote by NH(S) the set of vertices in H which are adjacent to some vertex in
S and set |NH(S)| = dH(S). In particular, when H = G and S = {u}, then let NG(S) = N(u) and
set dG(S) = d(u) and N [u] = N(u) ∪ {u}. We denote by G−H and G[S] the induced subgraphs of
G on V (G)− V (H) and S, respectively. Let Cm = x1x2 . . . xmx1 denote a cycle of order m. Define

N+
Cm

(u) = {xi+1 : xi ∈ NCm
(u)} and N−

Cm
(u) = {xi−1 : xi ∈ NCm

(u)}, N±
Cm

(u) = N+
Cm

(u) ∪
N−

Cm
(u), where subscripts are taken modulo m.
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A graph G of order n is said to be Hamiltonian if G contains cycle of length n. And a graph G
is said to be r-pancyclic if G contains a cycle of length k for each k such that r ≤ k ≤ n. 3-pancyclic
short for pancyclic. A vertex of a graph G is r-pancyclic if it is contained in a cycle of length k for
every k between r and n, and graph G is vertex r-pancyclic if every vertex is r-pancyclic, vertex
3-pancyclic short for vertex pancyclic.

We mention some fundamental results in order to increase generality.

Theorem 1.1 (Dirac,1952 [1]) If G is a graph of order n and δ ≥ n/2,then G is Hamiltonian.

Theorem 1.2 (Ore,1960 [2]) If G is a connected graph of order n ≥ 3, d(x) + d(y) ≥ n for each
pair of nonadjacent vertices x, y ∈ V (G), then G is Hamiltonian..

Theorem 1.3 (Erdős,1962 [6]) Let G be a graph of order n and size m. If δ ≥ n/2 or m ≥
max{C2

n−δ + δ2, C2
(n+2)/2 + [(n− 1)/2]2}, then G is Hamiltonian.

Theorem 1.4 (Erdős and Gallai,1959 [7]) Let G be a graph of order n and size m. If m ≥
n(n− 1)/2, then G is Hamiltonian.

In 1971 Bondy [3] obtained the following results on pancyclicity with Ore condition and graph
size.

Theorem 1.5 (Bondy,1971 [3]) If G is a 2-connected graph of order n ≥ 3, d(x) + d(y) ≥ n for
every pair of nonadjacent vertices x, y ∈ V (G), then G is pancyclic or G = Kn/2,n/2.

Theorem 1.6 (Bondy,1971 [3]) If G is a Hamiltonian of order n and size m ≥ n2/4, then G is
pancyclic or G = Kn/2,n/2.

In 1985 Ainouche and Christofides [4] considered d(x) + d(y) ≥ n − 1 for Hamiltonian and
obtained:

Theorem 1.7 (Ainouche and Christofides,1985 [4]) If G is a 2-connected graph of order n ≥ 3,
d(x) + d(y) ≥ n − 1 for each pair of nonadjacent vertices x, y ∈ V (G), then G is Hamiltonian or
KC

(n+1)/2 ∨G(n−1)/2.

Theorem 1.8 (Bollobás and Brightwell,1993 [4]) If G is a graph on n vertices and W ⊆ V (G),
and d(x) + d(y) ≥ n for each pair of nonadjacent vertices x, y ∈ W , then G has a cycle containing
all the vertices of W .

In 1994 Aldred, Holton and Zhang [5] relaxed Ore’ condition for pancyclic graphs by considered
condition d(x) + d(y) ≥ n− 1 and obtained:

2



Theorem 1.9 (Aldred, Holton and Zhang [5] or Theorem 36 of survey [6]) If G is a 2-connected
graph of order n ≥ 3, d(x) + d(y) ≥ n− 1 for each pair of nonadjacent vertices x, y ∈ V (G), then G
is pancyclic or G ∈ {KC

(n+1)/2 ∨G(n−1)/2,Kn/2,n/2, C5}.

Theorem 1.10 ((Hendry [5] or see Corollary 7 in [11]) Let G be a graph of order n ≥ 3 with
δ ≥ (n + 1)/2, then G is vertex pancyclic.

The following vertex pancyclic result is the Corollary 12 in Ref. [11] and Theorem 1.5 in Ref.
[12].

Theorem 1.11 (Randerath et al.[11] or Zhang et al.[12]) If G is a 2-connected graph of order n ≥
3, d(x) + d(y) ≥ n for each pair of nonadjacent vertices x, y ∈ V (G), then G is vertex 4-pancyclic or
G = Kn/2,n/2.

Now, we consider weakly Ore type condition d(x)+ d(y) ≥ n− 1 for vertex pancyclic and obtain
the following result.

Theorem 1.12 If G is a 2-connected graph of order n ≥ 7, d(x) + d(y) ≥ n − 1 for each pair of
nonadjacent vertices x, y ∈ V (G), then G is vertex 4-pancyclic or G ∈ {G(n−1)/2∨KC

(n+1)/2,Kn/2,n/2,

Kc
2 ∨ (K1 ∪Kn−3),K1 ∨K1

3 : Kn−4}.

Where G(n−1)/2 is a subgraph of order (n−1)/2, G(n−1)/2∨KC
(n+1)/2 is used to denote the graph

obtained by taking the join of G(n−1)/2 and KC
(n+1)/2. Kc

2 ∨ (K1 ∪Kn−3) and K1 ∨K1
3 : Kn−4 can

be found in Lemma 2.3.

Note that: Under the condition d(x) + d(y) ≥ n − 1, when connectivity κ = 1, clearly then
graph G is the graph consisting of two complete graphs joined at a point.

In Section 2 we discussion graphs of order n = 4, 5, 6 and satisfying the condition d(x) + d(y) ≥
n− 1 in Lemma 2.5.

2 The proof of Theorem

The proof will be divided into lemmas. It is readily seen that the Theorem 1.12 follows from Lemma
2.2, 2.3, 2.4, and Theorem 1.7.

Lemma 2.1 Let Cm = x1x2 . . . xmx1 be a cycle length m of graph G, if there does not exist Cm−2

containing v in G, then for any i with 1 ≤ i ≤ m, we obtain the following are all true: (1).
When v 6∈ {xi+1, xi+2}, then xixi+3 6∈ E(G). (2): When v 6∈ {xi+1, xi+2, xi+3}, then NG−Cm

(xi) ∩
NG−Cm

(xi+4) = Ø. (3): If v 6∈ {xi+1} and xixi+2 ∈ E(G), then when v 6∈ {xj+1} we have xjxj+2 ∈
E(G) and when v 6∈ {xj+1, xj+2} we have NG−Cm(xj) ∩ NG−Cm(xj+3) = Ø for any j 6= i, i + 1;
On other hand, if v 6∈ {xi+1, xi+2} and NG−Cm(xi) ∩ NG−Cm(xi+3) 6= Ø, then when v 6∈ {xj+1}
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we have xjxj+2 6∈ E(G) and when v 6∈ {xj+1, xj+2} we have NG−Cm
(xj) ∩ NG−Cm

(xj+3) = Ø for
any j 6= i, i + 1, i + 2. (4): If xixh ∈ E(G), h 6= i + 1, i + 2, then when v 6∈ {xi+1, xi+2} we have
xi+3xh+1 6∈ E(G) and when v 6∈ {xi+1, xh+1} we have xi+2xh+2 6∈ E(G).

Proof. (1). If xixi+3 ∈ E(G), then there exists Cm−2 = x1x2 . . . xixi+3 . . . xmx1 in G containing v,
a contradiction.

(2). If u ∈ NG−Cm(xi) ∩ NG−Cm(xi+4), then we get Cm−2 = x1x2 . . . xiuxi+4 . . . xmx1 in G
containing v, a contradiction.

(3). If xixi+2 ∈ E(G) and if there exist j 6= i, i + 1 with xjxj+2 ∈ E(G). Without loss of
generality, assume j ≥ i, then we get Cm−2 = x1x2 . . . xixi+2 . . . xjxj+2 . . . xmx1 in G containing v,
a contradiction. We can apply the similar arguments and obtain the rest of (3) are true.

(4). If xixh ∈ E(G), where h 6= i + 1, i + 2 and xi+3xh+1 ∈ E(G). Without loss of generality,
assume h ≥ i, then we get Cm−2 = x1x2 . . . xixhxh−1 . . . xi+3xh+1xh+2 . . . xmx1 in G containing v, a
contradiction. By the similar proof as above, if xixh ∈ E(G),where h 6= i + 1, i + 2 and xi+2xh+2 ∈
E(G). Without loss of generality, assume h ≥ i, then we get Cm−2 = x1x2 . . . xixhxh−1 . . . xi+2xh+2

xh+3 . . . xmx1 in G containing v, a contradiction.

Lemma 2.2 Let G be a 2-connected graph of order n ≥ 7, d(x) + d(y) ≥ n − 1 for each pair of
nonadjacent vertices x, y ∈ V (G), if there exists Cm containing v (m ≥ 7), then G contains Cm−2

containing v.

Proof. Assume, to the contrary, that there does not exist Cm−2 containing v. Then let Cm =
x1x2 . . . xmx1, we consider the following cases.

Case 1. m = 7.

Let C7 = x1x2x3x4x5x6x7x1 without loss of generality, assume v = x1.

In this case, clearly x1x4, x1x5 6∈ E(G) (Otherwise, if x1x4 ∈ E(G), we can obtain C5 :
x1x4x5x6x7x1, a contradiction. If x1x5 ∈ E(G), we can obtain C5 : x1x2x3x4x5x1, a contradic-
tion ).

Now, we consider the following two subcases.

Subcase 1.1. x1x3, x2x4 6∈ E(G).

In this case, if x4x6 6∈ E(G), then clearly we can check that dC7(x1) + dC7(x4) ≤ 5. If x4x6 ∈
E(G), then x1x6 6∈ E(G) (Otherwise, if x4x6 ∈ E(G), then we can obtain C5 : x1x2x3x4x6x1, a
contradiction.). Thus, we also have dC7(x1) + dC7(x4) ≤ 5.

And we have that both x1 and x4 do not have any common neighbor vertex in G−C7 (Otherwise,
if x ∈ V (G−C7) with x1x, x4x ∈ E(G), then we obtain a C5 : xx1x2x3x4x, a contradiction.). Hence
we can check that d(x1) + d(4) ≤ n− 2, this contradicts the condition of lemma 2.2.

Subcase 1.2. x1x3 or x2x4 ∈ E(G).

In this case, we have x1x6, x5x7 6∈ E(G) (Otherwise, we obtain a C5: containing v, a contradic-
tion.). By considering C7 = x1x7x6x5x4x3x2x1 so we can apply the similar arguments as subcase
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1.1, and we have d(x1) + d(5) ≤ n− 2, this contradicts the condition of lemma 2.2.

Case 2. m ≥ 8.

Let Cm = x1x2x3x4 . . . xmx1 without loss of generality, assume v = x1. Then we consider the
following two subcases.

Subcase 2.1. x1x3 or x1xm−1 ∈ E(G).

Without loss of generality, assume x1x3 ∈ E(G). In this case, we have x3x6 6∈ E(G) and both
x3 and x6 do not have any common neighbor vertex in G − Cm (Otherwise, if x3x6 ∈ E(G), then
we get Cm−2 : x3x6x7 . . . x3 containing x1, a contradiction. If u ∈ V (G−Cm) is adjacent to both x3

and x6, we also can obtain a Cm−2 = x3ux6x7 . . . xmx1x3 containing x1, a contradiction. ). Then we
consider the following cases.

(1). If x3x7 6∈ E(G).

When xr ∈ {x1, x2, . . . , xm} \ {x5} is adjacent to x6, then xr−1 is not adjacent to x3 (Other-
wise, we can obtain a Cm−2 = x3xr−1xr−2 . . . x6xrxr+1 . . . x3 containing x1, a contradiction). Since
x4, x6, x8 are not adjacent to x6, and x3, x5, x7 are not adjacent to x3, respectively.

Hence we have dCm(x3) ≤ m− |NCm(x6) \ {x5}|− |{x3, x5, x7}| ≤ m− dCm(x6)− 2, this implies

dCm(x3) + dCm(x6) ≤ m− 2 (1)

Since both x3 and x6 do not have any common neighbor vertex in G− Cm. Hence we have

dG−Cm(x3) + dG−Cm(x6) ≤ |V (G− Cm)| (2)

By the inequalities (1) and (2), we have

d(x3) + d(x6) ≤ |V (G− Cm)|+ m− 2 ≤ n− 2, this contradicts the condition of lemma 2.2.

(2) If x3x7 ∈ E(G). Then we have x5x9 6∈ E(G) (Otherwise, if x5x9 ∈ E(G), we can obtain
Cm−2 : x3x7x6x5x9x10 . . . x3 containing x1, a contradiction. Where if m = 8, then x9 = x1). Then
by a similar arguments as above inequality (1), we can check

dCm
(x5) + dCm

(x8) ≤ m− 2 (3)

Clearly, both x5 and x8 do not have any common neighbor vertex in G − Cm ( Otherwise, if
u ∈ V (G−Cm) is adjacent to both x5 and x8, then we get Cm−2 = x5ux8x9 . . . x1x3x4x5 containing
x1, a contradiction. Where if m = 8, then x9 = x1 ). Hence we have

dG−Cm
(x5) + dG−Cm

(x8) ≤ |V (G− Cm)| (4)

Clearly x5x8 6∈ E(G)(Otherwise, if x5x8 ∈ E(G), then we get Cm−2 = x5x8x9 . . . x5 containing
x1, a contradiction. Where if m = 8, then x9 = x1).
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Combining inequalities (3) and (4), we have

d(x5) + d(x8) ≤ |V (G− Cm)|+ m− 2 ≤ n− 2, this contradicts the condition of lemma 2.2.

Subcase 2.2. x1x3, x1xm−1 6∈ E(G).

In this case, we consider the following .

(1). xixi+2 ∈ E(G) for some i ∈ {2, 3, 4}.

Clearly, both x1 and xm−2 do not have any common neighbor vertex in G− Cm( Otherwise, if
u ∈ V (G−Cm) is adjacent to both x1 and xm−2, then we get Cm−2 = x1x2 . . . xixi+2xi+3 . . . xm−2ux1

containing x1, a contradiction.). Hence we have

dG−Cm
(x5) + dG−Cm

(x8) ≤ |V (G− Cm)| (5)

Clearly x1xm−2 6∈ E(G)(Otherwise, if x1xm−2 ∈ E(G), then we get Cm−2 = x1x2 . . . xm−2x1

containing x1, a contradiction). Then by a similar arguments as above inequality (1), we can check

dCm
(x1) + dCm

(xm−2) ≤ m− 2 (6)

Combining inequalities (5) and (6), we have

d(x5) + d(x8) ≤ |V (G− Cm)|+ m− 2 ≤ n− 2, this contradicts the condition of lemma 2.2.

(2). xixi+2 ∈ E(G) for some i ∈ {5, 6, . . . , m− 2}.

In this case, we replace x1, xm−2 by x1, x4 and we can apply the similar arguments as above (1)
of Subcase 2.2, and obtain a contradiction.

(3). xixi+2 6∈ E(G) for any i ∈ {1, 2, . . . , m− 1}.

In this case, we consider the following subcases.

(3− 1). Both x1 and x4 do not have any common neighbor vertex in G− Cm.

In this case, we have x1x4 6∈ E(G) (Otherwise, if x1x4 ∈ E(G), then we get Cm−2 : x1x4x5 . . . xm

x1 containing x1, a contradiction ).

Then, we can check

d(x1) + d(x4) ≤ |V (G− Cm)|+ m− 2 ≤ n− 2, this contradicts the condition of lemma 2.2.

(3 − 2). Both x1 and x4 have one common neighbor vertex in G − Cm. Then both x5 and x8

do not have any common neighbor vertex in G − Cm. (Otherwise, let u ∈ V (G − Cm) is adjacent
to both x1 and x4. If v ∈ V (G − Cm) is adjacent to both x5 and x8. (i). When u = v, then we
obtain a Cm−2 = x1ux5x6 . . . x1 containing x1, a contradiction. (ii). When u 6= v, then we obtain a
Cm−2 = x1ux4x5vx8x9 . . . x1 containing x1, a contradiction.).

Hence, by the similar arguments as above we have
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d(x4) + d(x8) ≤ |V (G− Cm)|+ m− 2 ≤ n− 2, this contradicts the condition of lemma 2.2.

Lemma 2.3 Let G be a 2-connected graph of order n ≥ 7, d(x) + d(y) ≥ n − 1 for each pair of
nonadjacent vertices x, y ∈ V (G), if there does not exist C4 containing v, then G ∈ {Kc

2 ∨ (K1 ∪
Kn−3),K1 ∨K1

3 : Kn−4}

proof. For some vertex v, if there does not exist C4 containing v. Then induced subgraph G[N(v)]
does contain any a path of order 3, and not two vertices of N(v) that have a common neighbor vertex
in G − N [v], then we claim that |N(v)| ≤ 3. Otherwise, if |N(v)| ≥ 4, then let x, y ∈ N(v) with
xy 6∈ E(G), then we can check that d(v) + d(u) ≤ n− 2, a contradiction.

When |N(v)| = 2. In this case, clearly G − N [v] is a complete subgraph. Otherwise, if x, y ∈
V (G −N [v]) with xy 6∈ E(G), then we can check that d(v) + d(x) ≤ n − 2, a contradiction. Hence
we have G = Kc

2 ∨ (K1 ∪Kn−3)

When |N(v)| = 3. In this case, clearly N(v) have adjacent two vertices (Otherwise, let x, y ∈
N(v), then we can check that d(x) + d(y) ≤ n− 2, a contradiction). Without loss of generality, say
x, y ∈ N(v) with xy ∈ E(G), Then we have (1). Each of {x, y} is adjacent to only one vertex of
G − N [v] (Otherwise, if x is adjacent to at least two vertices of G − N [v], let w = N(v) \ {x, y},
then we can check that d(y) + d(w) ≤ n− 2, a contradiction ). We also have G−N [v] is a complete
subgraph. In this case, we have G = K1 ∨K1

3 : Kn−4.

Lemma 2.4 Let G be a 2-connected Hamiltonian graph of order n ≥ 7, d(x) + d(y) ≥ n− 1 for each
pair of nonadjacent vertices x, y ∈ V (G), for any vertex v, if there is not Cn−1 containing v in G,
then G ∈ {Kn/2,n/2,Kn/2,n/2 − e}.

Proof. Assume, to the contrary, that G 6∈ {Kn/2,n/2,Kn/2,n/2 − e}, then we have the following
claims.

Claim 1. xixi+3 ∈ E(G) or xi−1xi+2 ∈ E(G) for every xi ∈ V (Cn) with v 6∈ {xi−1, xi+1, xi+3}

Since not Cn−1, then when xh ∈ Cn is adjacent to xi+2, then xh−1 is not adjacent to xi. Namely
none of N−

Cn
(xi+2) are adjacent xi. Assume that Claim 1 is not true, then xixi+3, xi−1xi+2 6∈ E(G).

Together with xixi−2, xi+2xi+4 6∈ E(G) (Otherwise, if xixi−2 ∈ E(G), then xi−2xixi+1x . . . xi−2 =
Cn−1, a contradiction. If xi+2xi+4 ∈ E(G), then xi+2xi+4xi+5 . . . xi+2 = Cn−1, a contradiction).
Hence we can check

|NCn(xi)| ≤ |V (G)| − |N−
Cn

(xi+2)| − |{xi+3, xi−2}|, this implies d(xi) + d(xi+2) ≤ n − 2, this
contradicts the condition of lemma 2.4. The contradicts shows that claim 1 is true.

Claim 2. xixj 6∈ E(G) or xixj+1 6∈ E(G) for every vertex xi and xj in Cn with v 6= xi.

Otherwise, if there exists xj in Cn such that xixj , xixj+1 ∈ E(G). By Claim 1 we have
xi−1xi+2 ∈ E(G) or xi−2xi+1 ∈ E(G). Then we have xi−1xi+2xi+3 . . . xjxixj+1xj+2 . . . xi−1 = Cn−1

or xi−2xi+1xi+2 . . . xjxixj+1xj+2 . . . xi−2 = Cn−1, respectively, contradiction .

Claim 3. {x1, x3, x5, . . . , x2m−1, . . .} is a independent set and {x2, x4, x6, . . . , x2m, . . .} is also a
independent set.

7



Proof of Claim 3. By Claim 2, we know that d(xi) ≤ n/2 (i = 1, 2, . . .) (Otherwise, if d(xi) > n/2
where i = 1, 2, . . . and xi 6= v, then there must exist xj , xj+1 ∈ V (Cn) which all adjacent to xi, this
contradicts Claim 2. If if d(v) > n/2, xi = v. Since not Cn−1, then xixi+2 6∈ E(G), so we have
d(xi) + d(xi+2) ≥ n− 1, this implies d(xi+2) > n/2. Then there must exist xj , xj+1 ∈ V (Cn) which
all adjacent to xi+2, this contradicts Claim 2).

Since not Cn−1, then xi−1xi+1 6∈ E(G), so we have d(xi−1) + d(xi+1) ≥ n− 1 (i = 1, 2, . . .).

This implies (n− 1)/2 ≤ d(xi) ≤ n/2 (i = 1, 2, . . .).

Then for every xi with xi 6= v, since not Cn−1, by Claim 2, there do not exist xj , xj+1 in Cn

satisfying xixj , xixj+1 ∈ E(G). Then we have

Claim (3.1): If there exist xh, xh+1 that are not adjacent to xi with xi 6= v, then xi will be
adjacent to every vertex of ( . . . , xh−2m+1, . . . , xh−3, xh−1, xh+2, xh+4, . . . , xh+2m . . .).

Claim (3.2). If there do not exist xh, xh+1 that are not adjacent to xi with xi 6= v, then when i
is even, xi will be adjacent to every vertex of {x1, x3, x5, . . . , x2m−1, . . .}; When i is odd, xi will be
adjacent to every vertex of {x2, x4, x6, . . . , x2m, . . .}.

(1). If there do not exist Claim (3.1).

(1 − 1). When xi = v is not adjacent to any vertex of {. . . , xi−4, xi−2, xi+2, xi+4, . . .}. Then
Claim 3 holds.

(1− 2). When xi = v is adjacent to some vertex of {. . . , xi−4, xi−2, xi+2, xi+4, . . .}.

For example, if x − i = v is adjacent to xi+2r. Then xi+1 will be adjacent to xi+2r+2 or xi+1

will be adjacent to xi+2r−2. Then we can get a Cn−1 containing xi, a contradiction.

(2). If there exist Claim (3.1).

(2 − 1). If there also exist Claim (3.2). Then clearly there exist xj , xj+1 such that one vertex
satisfying Claim (3.1) and another vertex satisfying Claim (3.2), this implies that both xj and xj+1

will have at least two common vertices of Cn. Then by Claim 2, we have a Cn−1 containing xi, a
contradiction.

(2− 2). If there do not exist Claim (3.2).

In this case, By Claim 2, we have that if both xh and xh+1 are not adjacent to xi; then both
xh+2 and xh+1 or both xh and xh−1 are not adjacent to xi+1( Otherwise, both xi and xi+1 will have
at least two common vertices of Cn. Then get a Cn−1 containing xi.).

In this case, we choose xi = v, then by Claim 1 we have xi−1xi+2 ∈ E(G) or xixi+3 ∈ E(G).
Then we can obtain a Cn−1 containing xi, a contradiction.(For example, if xi−1xi+2 ∈ E(G). Since
both xh and xh+1 are not adjacent to xi, and both xh+2 and xh+1 or both xh and xh−1 are not
adjacent to xi+1. Without loss of generality, assume both xh+2 and xh+1 are not adjacent to xi+1,
then we get Cn−1 = xhxh−1 . . . xi+2xi−1xi−2 . . . xh+2xixi+1xh+3xh).

By the above (1) and Claim (3.2), we have that {x1, x3, x5, . . . , x2m−1, . . .} is a independent set
and {x2, x4, x6, . . . , x2m, . . .} is also a independent set. By (n− 1)/2 ≤ d(xi) ≤ n/2 (i = 1, 2, . . .), we
get G ∈ {Kn/2,n/2,Kn/2,n/2 − e}.
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Therefore, Lemma 2.4 is proved.

Lemma 2.5 If G is a 2-connected graph of order n = 4, 5, 6, d(x)+d(y) ≥ n−1 for each pair of non-
adjacent vertices x, y ∈ V (G), then G is vertex 4-pancyclic or G ∈ {KC

(n+1)/2∨G(n−1)/2,Kn/2,n/2, C6+
2e, C5 + e, C5}.

proof. Under the condition of Lemma 2.5, by Theorem 1.7, if G 6∈ KC
(n+1)/2 ∨G(n−1)/2, then G is a

Hamiltonian. Then we consider v-4-pancyclic.

When n = 4. Clearly G is vertex 4-pancyclic.

When n = 5. Let C5 = x1x2x3x4x5x1 without loss of generality, assume v = x1. If there does
not exist C4 containing x1, then we easy to see that G = C5 or G = C5 + x2x5.

When n = 6. Let C6 = x1x2x3x4x5x6x1 without loss of generality, assume v = x1.

(1). When d(x1) ≥ 3.

(1 − 1). If x1x3 ∈ E(G). Then there exist C5 containing x1. (1 − 1 − 1). If x4x6 6∈ E(G),
Then there exist C4 containing x1. Thus, G is vertex 4-pancyclic. (1 − 1 − 2). If x4x6 6∈ E(G), by
d(x4) + d(x6) ≥ n − 1, this implies that d(x4) ≥ 3 or d(x6) ≥ 3. Without loss of generality, assume
d(x4) ≥ 3. If x4x1 ∈ E(G), Then there exist C4 containing x1. Thus, G is vertex 4-pancyclic. If
x4x2 ∈ E(G), Then there exist C4 = x1x3x4x2x1 containing x1. Thus, G is vertex 4-pancyclic.

(1 − 2). If x1x5 ∈ E(G). By considering C6 = x1x6x5x4x3x2x1 so we can apply the similar
arguments as above (1− 1). Thus, G is vertex 4-pancyclic.

(1− 3). If x1x4 ∈ E(G). In this case, there exist C4 containing x1. (1− 3− 1). If x2x5 6∈ E(G)
or x3x6 6∈ E(G). Without loss of generality, say x3x6 6∈ E(G), then by d(x3)+d(x6) ≥ n−1, we have
d(x3) ≥ 3 or d(x6) ≥ 3. This implies x3x5 ∈ E(G) or x6x2 ∈ E(G) or x6x4 ∈ E(G). For example,
if x6x2 ∈ E(G), then there exist C5 = x1x2x6x5x4x1 containing x1. Thus, G is vertex 4-pancyclic.
(1− 3− 2). If x2x5 ∈ E(G) and x3x6 ∈ E(G) with not C5 containing x1. Then G = Kn/2,n/2.

(2). When d(x1) = 2. In this case, by d(x1) + d(x3) ≥ n − 1, we have d(x3) ≥ 3. This
implies x3x5 ∈ E(G) or x3x6 ∈ E(G). (2 − 1). If x3x6 ∈ E(G), then there exist C4 containing
x1. Since d(x1) = 2, then x1x4 6∈ E(G), by d(x1) + d(x4) ≥ n − 1, we have d(x4) ≥ 3, this implies
x4x2 ∈ E(G) or x4x6 ∈ E(G). Hence we easy to see that there exist C5 containing x1. Thus, G is
vertex 4-pancyclic. (2 − 2). If x3x6 6∈ E(G). Since d(x1) = 2, by the condition of Lemma 2.5, we
have d(x3) ≥ 3, d(x4) ≥ 3, d(x5) ≥ 3. By x3x6 6∈ E(G) this implies x3x5 ∈ E(G), hence there exist
C5 containing x1. If there does not exist C4 containing x1, this implies x4x6 ∈ E(G). In this case,
G = C6 + x3x5 + x4x6.

The proof of Lemma 2.5 is complete.

Recent some results concerning cyclability of graphs were obtained. The following result is due
to Favaron et al. [9] and Ota [13].

Theorem 2.6 (Favaron et al.[9] and Ota [13]) Let G be a graph of order n and S is a subset of
V (G) with |S| ≥ 3. If d(x) + d(y) ≥ n for every pair of nonadjacent vertices x and y in S, then S is
cyclable in G.
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By the work in this paper, one will ask the following problem.

Problem 2.7. What is the graph G of order n of non-S-cyclable with d(x) + d(y) ≥ n− 1 for every
pair of nonadjacent vertices x and y in S.
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