Elsevier Editorial System(tm) for Discrete Applied Mathematics Manuscript Draft

Manuscript Number: DA846

Title: Ore type condition and geodesic-pancyclic graphs

Article Type: Contribution

Keywords: Geodesic-pancyclic graphs, Panconnected graphs, Dirac type condition , Ore type condition.

Corresponding Author: Dr. kewen zhao,

Corresponding Author's Institution:

First Author: kewen zhao

Order of Authors: kewen zhao; Ping Zhang

Abstract: For a graph G, let $\delta(G)$ denote the minimum degree and d(x) the degree of vertex x in G. In 2007, Chan et al. investigated geodesic-pancyclic graphs under Dirac type condition and proved that if G is a connected graph of order $n \ge 4$ and $\delta(G) \ge (n+2)/2$, then G is geodesic-pancyclic graphs (Discrete Appl. Math. 155 (2007), 15, 1971--1978). In this paper, we investigate geodesic-pancyclic graphs under further Ore type condition and prove that if G is a connected graph order $n \ge 4$ and $d(u)+d(v) \ge n+2$ for each pair of non-adjacent vertices u,v in G, then G is geodesic-pancyclic graphs or $G=\Gamma$. This result generalizes the above result of Chan et al.

Ore type condition and geodesic-pancyclic graphs

Kewen Zhao^{*}, Ping Zhang[†]

December 8, 2010

Abstract: For a graph G, let $\delta(G)$ denote the minimum degree and d(x) the degree of vertex x in G. In 2007, Chan et al. investigated geodesic-pancyclic graphs under Dirac type condition and proved that if G is a connected graph of order $n \ge 4$ and $\delta(G) \ge (n+2)/2$, then G is geodesic-pancyclic graphs (Discrete Appl. Math. 155 (2007), 15, 1971–1978.). In this paper, we investigate geodesic-pancyclic graphs under further Ore type condition and prove that if G is a connected graph order $n \ge 4$ and $d(u) + d(v) \ge n + 2$ for each pair of non-adjacent vertices u, v in G, then G is geodesic-pancyclic graphs or $G = \Gamma$. This result generalizes the above result of Chan et al.

Key words: Geodesic-pancyclic graphs, Panconnected graphs, Dirac type condition , Ore type condition.

MSC: 05C38; 05C45.

1 Introduction

We consider only finite undirected graphs without loops or multiple edges. Our terminology is standard concept as indicated. A good reference for any undefined terms is [1]. For a graph G, let V(G) be the vertex set of G and E(G) the edge set, the minimum degree of a graph G is denoted by $\delta(G)$. The complete graph of order n is denoted by K_n . For a subgraph H of a graph G and a subset S of V(G), let $N_H(S)$ be the set of vertices in H that are adjacent to some vertex in S and let the cardinality of set $N_H(S)$ be $|N_H(S)| = d_H(S)$. Furthermore, let G - H and G[S] denote the subgraphs of G induced by V(G) - V(H) and S, respectively. If no ambiguity can arise we sometimes write N(S) instead of $N_G(S)$, δ instead of $\delta(G)$, etc.

A path in a graph G that contains every vertex of G is called a Hamiltonian path of G. A Hamiltonian-connected graph is a graph that each pair of distinct vertices

^{*}Institute of Information Science, Qiongzhou University, Sanya, Hainan, 572022, P.R.China;

[†]Department of Mathematics and Statistics, Western Michigan University, Michigan 49008-5152, US

u, v in G can be connected by a Hamiltonian path. A u - v path is a path in G that connects u and v. A graph G is said to be [r, n]-panconnected if each pair of distinct vertices u, v of G has a u - v path of length k for each k with $r - 1 \le k \le n - 1$. In particular, if r - 1 = d(u, v), then graph G is called panconnected.

A shortest path connecting two vertices u and v is called a u - v geodesic. The distance between u and v in a graph G, denoted by $d_G(u, v)$, is the number of edges in a u - v geodesic. A graph G with n vertices is geodesic-pancyclic, if for each pair of vertices $u, v \in V(G)$, every u - v geodesic lies on every cycle of length k satisfying $\max\{2d_G(u, v), 3\} \leq k \leq n$.

Recently, geodesic-pancyclic graphs problems have been studied in some papers [2],[3],[5].

In 2007 Chan et al. proved the following geodesic-pancyclic result by using Dirac type condition.

Theorem 1.1 (Chan et al. [2]) If G is a connected graph of order $n \ge 4$ and $\delta(G) \ge (n+2)/2$, then G is geodesic-pancyclic graphs.

Dirac type condition is a fundamental condition, however, Ore type condition is more powerful fundamental condition.

Thus, in this paper, we study geodesic-pancyclic result by using Ore type condition and prove.

Theorem 1.2 If G is a connected graph of order $n \ge 4$ and $d(u) + d(v) \ge n + 2$ for each pair of distinct non-adjacent vertices u, v in G, then G is geodesic-pancyclic graphs or $G = \Gamma$.

Where $\Gamma = K_2^- \lor (K_1 \cup K_m \cup K_{n-m-3}) \cup E^*$, among them K_2^- is a empty subgraph of order 2, $K_2^- \lor (K_1 \cup K_m \cup K_{n-m-3})$ is the graph obtained by taking the join of K_2^- and three disjoint complete graphs K_1, K_m and K_{n-m-3}, E^* is a set of edges whose one of end-vertices are in K_1 and another are in $K_m \cup K_{n-m-3}$, so vertex set $V(\Gamma) = V(K_2^-) \cup V(K_1) \cup V(K_m) \cup V(K_{n-m-3})$ and edge set $E(\Gamma) = E(K_2^- \lor (K_1 \cup K_m \cup K_{n-m-3})) \cup E^*$.

In 2007 Chan et al. also proved the following geodesic-pancyclic graphs result.

Theorem 1.3 (Chan et al. [2]) If G is a connected graph of order $n \ge 4$ and $d(u) + d(v) \ge (3n - 2)/2$ for each pair of distinct non-adjacent vertices u, v in G, then G is geodesic-pancyclic graphs.

In this paper, we also prove the following result, which improves the above condition of Theorem 1.3.

Theorem 1.4 If G is a connected graph of order $n \ge 4$ and $d(u) + d(v) \ge (3n-3)/2$ for each pair of distinct non-adjacent vertices u, v in G, then G is geodesic-pancyclic graphs or $G \in \{\Gamma, \xi_5, \zeta_5\}$, where ξ_5, ζ_5 are graphs of order 5 that can be found in the proof of Theorem 1.4.

2 The proof of Main Result

To prove the Theorem 2 and Theorem 4, we need the following lemma.

Lemma 2.1 (Faudree and Schelp [4]) (1). If G is a connected graph with n vertices and $d(u) + d(v) \ge n + 1$ for each pair of distinct non-adjacent vertices u, v in G, then G is [5,n] panconnected. (2). If G is a connected graph with n vertices and $d(u) + d(v) \ge n + 2$ for each pair of distinct non-adjacent vertices u, v in G, then G is panconnected.

Proof of Theorem 1.2.

For any two vertices u, v in G, we consider the following cases.

Case 1. If $uv \notin E(G)$.

In this case, by the condition of Theorem 1.2 that $d(u) + d(v) \ge n + 2$, both uand v must have at least a common neighbor in G, i.e., $d_G(u, v) \le 2$, this implies $d_G(u, v) = 2$.

Then let uwv be a path of order 3 and let H = G - w, by $d(u) + d(v) \ge n + 2$, we can check that $d_H(x) + d_H(y) \ge |V(H)| + 1$ for each pair of distinct non-adjacent vertices x, y in H, and by Lemma 1, there exist u - v paths in H of each lengths k with $4 \le k \le |V(H)| - 1 = n - 2$. Since $d_H(x) + d_H(y) \ge |V(H)| + 1$, so $|N_H(x) \cap N_H(y)| \ge 1$, i.e. there also exists a u - v path of length 2, so to complete the proof, we only need to prove there exists a u - v path of length 3.

If there does not exist any u-v paths of length 3 in H, then every vertex of $N_H(u)$ does not adjacent to any vertex of $N_H(v)$. Since $d_H(x) + d_H(y) \ge |V(H)| + 1$ for all $x \in N_H(u), y \in N_H(v)$, this implies that $G[N_H(u)]$ and $G[N_H(v)]$ are two complete subgraphs, and by $d_H(x) + d_H(y) \ge |V(H)| + 1$, x and y all must be adjacent to uand v for $x \in N_H(u), y \in N_H(v)$. Clearly, in this case, w may be adjacent to some vertices of $N_H(u) \cup N_H(v)$, we denote the graph by $K_2^- \lor (K_1 \cup K_m \cup K_{n-m-3}) \cup$ $E^* = \Gamma$, where $K_2^- = G[\{u, v\}]$ is a empty subgraph, $K_1 = w, K_m = G[N_H(u)]$ and $K_{n-m-3} = G[N_H(v)], E^*$ is an edge set that connects from vertex w to some vertices of $K_m \cup K_{n-m-3}$.

Case 2. If $uv \in E(G)$.

In this case by condition of Theorem 1.2 that $d(u)+d(v) \ge n+2$ and by Lemma 2.1 such that G is panconnected, so the edge uv lies on every cycle of length k satisfying $3 \le k \le n$.

Therefore, this complete the proof of Theorem 1.2.

Proof of Theorem 1.4.

For any two vertices u, v in G, we consider the following cases on order n.

When $n \ge 7$, by the condition of Theorem 1.4 that $d(u)+d(v) \ge (3n-3)/2$ for each pair u, v in V(G) of $uv \notin E(G)$, we can check that $d(u) + d(v) \ge (3n-3)/2 \ge n+2$, by Theorem 1.2, G is geodesic-pancyclic graphs or $G = \Gamma$.

When n = 6, by the condition of Theorem 1.4 that $d(u) + d(v) \ge (3n-3)/2$ for each pair of nonadjacent vertices u, v in V(G), we have $d(u) + d(v) \ge (3n-3)/2 = 15/2$.

Since d(u)+d(v) is integral, so d(u)+d(v) = n+2, by Theorem 2, G is panconnected, so G is geodesic-pancyclic graphs or $G = \Gamma$.

When n = 5, $d(u) + d(v) \ge (3n - 3)/2 = 6$.

In this case, since $d(u) + d(v) \ge (3n-3)/2$, so $d(u,v) \le 2$.

If d(u, v) = 2, let $\{x, y, w\} = V(G - uwv)$, by $d(u) + d(v) \ge 6$, w, x and y all are adjacent to u and v. For any uwy path of order 3, when there exists a u - v path of order 4 in G - w, then the proof is complete. When there does not exist any u - vpath of order 4 in G - w, then $xy \notin E(G)$, in this case G is the graph satisfying $N(x) = N(y) = \{u, v, w\}, N(w) = \{u, v, x, y\}$ and $N(u) = N(v) = \{w, x, y\}$, denoted by ξ_5 .

If d(u, v) = 1. In this case, since $d(u) + d(v) \ge 6 = n + 1$, by Lemma 2.1, we have a u - v path of order 5, denoted by uxwyv. Clearly, we can prove that uw or $vw \in E(G)$ (Otherwise, if $uw, vw \notin E(G)$, then d(w) = 2, so we have d(u) + d(w) < 6, a contradiction), thus, there exists a u - v path of order 4. Next, if uy or $vx \in E(G)$, then we have u - v path of order 3. If $uy, vx \notin E(G)$, by $d(u) + d(y) \ge 6$ and $d(x) + d(v) \ge 6$, we must see that $uw, vw, xy \in E(G)$, in this case G is the graph satisfying $N(u) = N(y) = \{u, w, y\}, N(x) = N(v) = \{u, w, y\}, N(w) = \{u, v, x, y\}$, denoted by ζ_5 .

When n = 4, by the condition of Theorem that $d(u) + d(v) \ge (3n - 3)/2$ for each pair of nonadjacent vertices u, v in V(G), we have $d(u) + d(v) \ge (3n - 3)/2 = 9/2$. Since d(u) + d(v) is integral, so $d(u) + d(v) \ge 5$. For order n = 4, so $d(u) \ge 3$ for any $u \in V(G)$. In this case if $xy \notin E(G)$, then $d(x) + d(y) \le 4$. This implies G is a complete graph K_4 , so G is geodesic-pancyclic graph.

Therefore, this complete the proof of Theorem 1.4.

References

- J. A. Bondy and U. S. R. Murty, "Graph Theory with Applications", American Elsevier, New York (1976).
- [2] H. C. Chan, J. M. Chang, Y. L. Wang, S. J. Horng, Geodesic-pancyclic graphs. Discrete Appl. Math. 155 (2007), no. 15, 1971–1978.
- [3] H. C. Chan, J. M. Chang, Y. L. Wang, S. J. Horng, Geodesic-pancyclicity and fault-tolerant panconnectivity of augmented cubes. Appl. Math. Comput. 207 (2009), no. 2, 333–339.
- [4] R. J. Faudree, R. H. Schelp, Path connected graphs. Acta Math. Acad. Sci. Hungar. 25 (1974), 313-319.
- [5] H. C.Hsu, P. L. Lai, C. H. Tsai, Geodesic pancyclicity and balanced pancyclicity of augmented cubes. Inform. Process. Lett. 101 (2007), no. 6, 227-232.

[6] B. Randerath, I.Schiermeyer, M.Tewes, L.Volkmann, Vertex pancyclic graphs. Discrete Appl. Math. 120 (2002), no. 1-3, 219–237.