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Kewen Zhao∗, Ping Zhang†
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Abstract: For a graph G, let δ(G) denote the minimum degree and d(x) the degree
of vertex x in G. In 2007, Chan et al. investigated geodesic-pancyclic graphs under
Dirac type condition and proved that if G is a connected graph of order n ≥ 4
and δ(G) ≥ (n + 2)/2, then G is geodesic-pancyclic graphs (Discrete Appl. Math.
155 (2007), 15, 1971–1978.). In this paper, we investigate geodesic-pancyclic graphs
under further Ore type condition and prove that if G is a connected graph order n ≥ 4
and d(u) + d(v) ≥ n + 2 for each pair of non-adjacent vertices u, v in G, then G is
geodesic-pancyclic graphs or G = Γ. This result generalizes the above result of Chan
et al.
Key words: Geodesic-pancyclic graphs, Panconnected graphs, Dirac type condition
, Ore type condition.
MSC: 05C38; 05C45.

1 Introduction

We consider only finite undirected graphs without loops or multiple edges. Our
terminology is standard concept as indicated. A good reference for any undefined
terms is [1]. For a graph G, let V (G) be the vertex set of G and E(G) the edge
set, the minimum degree of a graph G is denoted by δ(G). The complete graph of
order n is denoted by Kn. For a subgraph H of a graph G and a subset S of V (G),
let NH(S) be the set of vertices in H that are adjacent to some vertex in S and
let the cardinality of set NH(S) be |NH(S)| = dH(S). Furthermore, let G − H and
G[S] denote the subgraphs of G induced by V (G)− V (H) and S, respectively. If no
ambiguity can arise we sometimes write N(S) instead of NG(S), δ instead of δ(G),
etc.

A path in a graph G that contains every vertex of G is called a Hamiltonian path
of G. A Hamiltonian-connected graph is a graph that each pair of distinct vertices
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u, v in G can be connected by a Hamiltonian path. A u− v path is a path in G that
connects u and v. A graph G is said to be [r, n]-panconnected if each pair of distinct
vertices u, v of G has a u− v path of length k for each k with r − 1 ≤ k ≤ n− 1. In
particular, if r − 1 = d(u, v), then graph G is called panconnected.

A shortest path connecting two vertices u and v is called a u − v geodesic. The
distance between u and v in a graph G, denoted by dG(u, v), is the number of edges
in a u− v geodesic. A graph G with n vertices is geodesic-pancyclic, if for each pair
of vertices u, v ∈ V (G), every u− v geodesic lies on every cycle of length k satisfying
max{2dG(u, v), 3} ≤ k ≤ n.

Recently, geodesic-pancyclic graphs problems have been studied in some papers
[2],[3],[5].

In 2007 Chan et al. proved the following geodesic-pancyclic result by using Dirac
type condition.

Theorem 1.1 (Chan et al. [2]) If G is a connected graph of order n ≥ 4 and
δ(G) ≥ (n+ 2)/2, then G is geodesic-pancyclic graphs.

Dirac type condition is a fundamental condition, however, Ore type condition is
more powerful fundamental condition.

Thus, in this paper, we study geodesic-pancyclic result by using Ore type condition
and prove.

Theorem 1.2 If G is a connected graph of order n ≥ 4 and d(u) + d(v) ≥ n + 2
for each pair of distinct non-adjacent vertices u, v in G, then G is geodesic-pancyclic
graphs or G = Γ.

Where Γ = K−
2 ∨ (K1∪Km∪Kn−m−3)∪E∗, among them K−

2 is a empty subgraph
of order 2, K−

2 ∨ (K1 ∪ Km ∪ Kn−m−3) is the graph obtained by taking the join of
K−

2 and three disjoint complete graphs K1, Km and Kn−m−3, E
∗ is a set of edges

whose one of end-vertices are in K1 and another are in Km ∪Kn−m−3, so vertex set
V (Γ) = V (K−

2 ) ∪ V (K1) ∪ V (Km) ∪ V (Kn−m−3) and edge set E(Γ) = E(K−
2 ∨ (K1 ∪

Km ∪Kn−m−3)) ∪ E∗.
In 2007 Chan et al. also proved the following geodesic-pancyclic graphs result.

Theorem 1.3 (Chan et al. [2]) If G is a connected graph of order n ≥ 4 and
d(u) + d(v) ≥ (3n − 2)/2 for each pair of distinct non-adjacent vertices u, v in G,
then G is geodesic-pancyclic graphs.

In this paper, we also prove the following result, which improves the above condi-
tion of Theorem 1.3.

Theorem 1.4 If G is a connected graph of order n ≥ 4 and d(u)+d(v) ≥ (3n−3)/2
for each pair of distinct non-adjacent vertices u, v in G, then G is geodesic-pancyclic
graphs or G ∈ {Γ, ξ5, ζ5}, where ξ5, ζ5 are graphs of order 5 that can be found in the
proof of Theorem 1.4.
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2 The proof of Main Result

To prove the Theorem 2 and Theorem 4, we need the following lemma.

Lemma 2.1 (Faudree and Schelp [4]) (1). If G is a connected graph with n vertices
and d(u) + d(v) ≥ n + 1 for each pair of distinct non-adjacent vertices u, v in G,
then G is [5, n] panconnected. (2). If G is a connected graph with n vertices and
d(u) + d(v) ≥ n+ 2 for each pair of distinct non-adjacent vertices u, v in G, then G
is panconnected.

Proof of Theorem 1.2.
For any two vertices u, v in G, we consider the following cases.

Case 1. If uv ̸∈ E(G).
In this case, by the condition of Theorem 1.2 that d(u) + d(v) ≥ n + 2, both u

and v must have at least a common neighbor in G, i.e., dG(u, v) ≤ 2, this implies
dG(u, v) = 2.

Then let uwv be a path of order 3 and let H = G − w, by d(u) + d(v) ≥ n + 2,
we can check that dH(x) + dH(y) ≥ |V (H)|+ 1 for each pair of distinct non-adjacent
vertices x, y in H, and by Lemma 1, there exist u − v paths in H of each lengths
k with 4 ≤ k ≤ |V (H)| − 1 = n − 2. Since dH(x) + dH(y) ≥ |V (H)| + 1, so
|NH(x) ∩ NH(y)| ≥ 1, i.e. there also exists a u − v path of length 2, so to complete
the proof, we only need to prove there exists a u− v path of length 3.

If there does not exist any u−v paths of length 3 in H, then every vertex of NH(u)
does not adjacent to any vertex of NH(v). Since dH(x) + dH(y) ≥ |V (H)|+ 1 for all
x ∈ NH(u), y ∈ NH(v), this implies that G[NH(u)] and G[NH(v)] are two complete
subgraphs, and by dH(x) + dH(y) ≥ |V (H)| + 1, x and y all must be adjacent to u
and v for x ∈ NH(u), y ∈ NH(v). Clearly, in this case, w may be adjacent to some
vertices of NH(u) ∪ NH(v), we denote the graph by K−

2 ∨ (K1 ∪ Km ∪ Kn−m−3) ∪
E∗ = Γ, where K−

2 = G[{u, v}] is a empty subgraph, K1 = w,Km = G[NH(u)] and
Kn−m−3 = G[NH(v)], E

∗ is an edge set that connects from vertex w to some vertices
of Km ∪Kn−m−3.
Case 2. If uv ∈ E(G).

In this case by condition of Theorem 1.2 that d(u)+d(v) ≥ n+2 and by Lemma 2.1
such that G is panconnected, so the edge uv lies on every cycle of length k satisfying
3 ≤ k ≤ n.

Therefore, this complete the proof of Theorem 1.2.
Proof of Theorem 1.4.

For any two vertices u, v in G, we consider the following cases on order n.
When n ≥ 7, by the condition of Theorem 1.4 that d(u)+d(v) ≥ (3n−3)/2 for each

pair u, v in V (G) of uv ̸∈ E(G), we can check that d(u) + d(v) ≥ (3n− 3)/2 ≥ n+2,
by Theorem 1.2, G is geodesic-pancyclic graphs or G = Γ.

When n = 6, by the condition of Theorem 1.4 that d(u)+d(v) ≥ (3n−3)/2 for each
pair of nonadjacent vertices u, v in V (G), we have d(u) + d(v) ≥ (3n− 3)/2 = 15/2.
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Since d(u)+d(v) is integral, so d(u)+d(v)8 = n+2, by Theorem 2, G is panconnected,
so G is geodesic-pancyclic graphs or G = Γ.

When n = 5, d(u) + d(v) ≥ (3n− 3)/2 = 6.
In this case, since d(u) + d(v) ≥ (3n− 3)/2, so d(u, v) ≤ 2.
If d(u, v) = 2, let {x, y, w} = V (G− uwv), by d(u) + d(v) ≥ 6, w, x and y all are

adjacent to u and v. For any uwy path of order 3, when there exists a u− v path of
order 4 in G − w, then the proof is complete. When there does not exist any u − v
path of order 4 in G − w, then xy ̸∈ E(G), in this case G is the graph satisfying
N(x) = N(y) = {u, v, w}, N(w) = {u, v, x, y} and N(u) = N(v) = {w, x, y}, denoted
by ξ5.

If d(u, v) = 1. In this case, since d(u) + d(v) ≥ 6 = n + 1, by Lemma 2.1, we
have a u − v path of order 5, denoted by uxwyv. Clearly, we can prove that uw or
vw ∈ E(G) ( Otherwise, if uw, vw ̸∈ E(G), then d(w) = 2, so we have d(u)+d(w) < 6,
a contradiction ), thus, there exists a u−v path of order 4. Next, if uy or vx ∈ E(G),
then we have u − v path of order 3. If uy, vx ̸∈ E(G), by d(u) + d(y) ≥ 6 and
d(x) + d(v) ≥ 6, we must see that uw, vw, xy ∈ E(G), in this case G is the graph
satisfying N(u) = N(y) = {u,w, y}, N(x) = N(v) = {u,w, y}, N(w) = {u, v, x, y},
denoted by ζ5.

When n = 4, by the condition of Theorem that d(u) + d(v) ≥ (3n− 3)/2 for each
pair of nonadjacent vertices u, v in V (G), we have d(u) + d(v) ≥ (3n − 3)/2 = 9/2.
Since d(u) + d(v) is integral, so d(u) + d(v) ≥ 5. For order n = 4, so d(u) ≥ 3 for
any u ∈ V (G). In this case if xy ̸∈ E(G), then d(x) + d(y) ≤ 4. This implies G is a
complete graph K4, so G is geodesic-pancyclic graph.

Therefore, this complete the proof of Theorem 1.4.
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