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a b s t r a c t

For a graph G, δ denotes the minimum degree of G. In 1971, Bondy proved that, if G is a
2-connected graph of order n and d(x) + d(y) ≥ n for each pair of non-adjacent vertices x,
y inG, thenG is pancyclic orG = Kn/2,n/2. In 2006,Wu et al. proved that, ifG is a 2-connected
graph of order n ≥ 6 and |N(x) ∪ N(y)| + δ ≥ n for each pair of non-adjacent vertices x,
y of d(x, y) = 2 in G, then G is pancyclic or G = Kn/2,n/2. In this paper, we introduce a new
condition which generalizes two conditions of degree sum and neighborhood union and
prove that, if G is a 2-connected graph of order n ≥ 6 and |N(x) ∪ N(y)| + d(w) ≥ n for
any three vertices x, y, w of d(x, y) = 2 and wx or wy ∉ E(G) in G, then G is pancyclic or
G = Kn/2,n/2. This result also generalizes the above two results.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

We generalize two well-known degree sum and neighborhood union conditions for the characterizing of Hamiltonian
graphs, in particular for pancyclic graphs. First, we give a few definitions and some notation. We consider only finite
undirected graphs with no loops or multiples. We denote by δ(G) the minimum degree of G. If u is a vertex and H is a
subgraph of G, then define NH(u) = {v ∈ V (H) : uv ∈ E(G)} to be the vertex set of H that is adjacent to vertex u, and
set NH [u] = NH(u) ∪ {u}. Let G − H and G[S] denote the subgraphs of G induced by V (G) − V (H) and S, respectively.
If Cm = x1x2 · · · xmx1 is a cycle of order m, let N+

Cm(u) = {xi+1 : xi ∈ NCm(u)}, N−

Cm(u) = {xi−1 : xi ∈ NCm(u)}, and
N±cm(u) = N+

Cm(u) ∪ N−

Cm(u), where subscripts are taken modulo m. For a graph G of order n, in 1960, Ore introduced
the degree sum condition d(u) + d(v) ≥ n for G to be Hamiltonian; in 1987, Faudree et al. introduced the neighborhood
union NC = min{|N(x) ∪ N(y)| : x, y ∈ V (G), xy ∉ E(G)}; and, in 1989, Lindquester [12] introduced the neighborhood
union of each pair of vertices at distance 2 as follows: NC2 = min{|N(x) ∪ N(y)| : x, y ∈ V (G), d(x, y) = 2}. In
this paper, we introduce a new sufficient condition of generalizing degree sum and neighborhood union as follows:
DNC2 = min{|N(x) ∪ N(y)| + d(w) : x, y, w ∈ V (G), d(x, y) = 2, wx or wy ∉ E(G)}. For graphs A and B, the join operator
A ∨ B of A and B is the graph constructed from A and B by adding all edges joining the vertices of A and the vertices of B. If
no ambiguity can arise, we sometimes write N(u) instead of NG(u), δ instead of δ(G), etc.

If a graph G has a Hamiltonian cycle (a cycle containing all vertices of G), then G is said to be Hamiltonian. A graph G is
said to be pancyclic if G contains cycles of every length k, 3 ≤ k ≤ n. Other terminology and notation not defined here can
be found in Gould [3].

In 1960, Ore obtained the following well-known Hamiltonian result on degree sum.
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Theorem 1.1 (Ore [13]). If G is a 2-connected graph of order n and d(x) + d(y) ≥ n for each pair of non-adjacent vertices x, y
in G, then G is Hamiltonian.

In 1971, Bondy considered Ore’s condition for pancyclic graphs.

Theorem 1.2 (Bondy [1]). If G is a 2-connected graph of order n and d(x) + d(y) ≥ n for each pair of non-adjacent vertices x, y
in G, then G is pancyclic or G = Kn/2,n/2.

In 1991, Faudree et al. proved the following result on neighborhood union.

Theorem 1.3 (Faudree et al. [2]). If G is a 2-connected graph of order n and |N(x)∪N(y)|+ δ ≥ n for each pair of non-adjacent
vertices x, y in G, then G is Hamiltonian.

In 2006, Wu et al. proved the following pancyclic result on neighborhood union at distance 2.

Theorem 1.4 (Wu et al. [14]). If G is a 2-connected graph of order n ≥ 6 and |N(x)∪N(y)|+δ ≥ n for each pair of non-adjacent
vertices x, y of d(x, y) = 2 in G, then G is pancyclic or G = Kn/2,n/2.

In this paper,we present a new sufficient conditionwhich generalizes the twowell-knowndegree sumandneighborhood
union conditions and prove the following result.

Theorem 1.5. If G is a 2-connected graph of order n ≥ 6 and |N(x) ∪ N(y)| + d(w) ≥ n for any three vertices x, y, w of
d(x, y) = 2 and wx or wy ∉ E(G) in G, then G is pancyclic or G = Kn/2,n/2.

Note. If each pair of nonadjacent vertices of a graph G satisfies the condition of Theorem 1.2, then, clearly, for any three
vertices x, y, w of d(x, y) = 2 and xw ∉ E(G) or yw ∉ E(G), |N(x) ∪ N(y)| + d(w) ≥ n holds, by Theorem 1.5, G is pancyclic
or G = Kn/2,n/2; thus Theorem 1.5 implies Theorem 1.2. Also, if each pair of nonadjacent vertices of a graph G satisfies
the condition of Theorem 1.4, then, clearly, for any three vertices x, y, w of d(x, y) = 2 and xw ∉ E(G) or yw ∉ E(G),
|N(x) ∪ N(y)| + d(w) ≥ n holds, by Theorem 1.5, G is pancyclic or G = Kn/2,n/2; thus, Theorem 1.5 implies Theorem 1.4.

Corollary 1.6. If G is a 2-connected graph of order n ≥ 3 and |N(x) ∪ N(y)| + d(w) ≥ n for any three vertices x, y, w of
d(x, y) = 2 and wx or wy ∉ E(G) in G, then G is Hamiltonian.

2. Proof of the main result

Obviously, Theorem 1.5 can be obtained immediately by the following Lemmas 2.1 and 2.6.

Lemma 2.1. If G is a 2-connected graph of order n ≥ 6 and DNC2 ≥ n, then G has C3, C4 or G = Kn/2,n/2.

Proof. We consider the following two cases.
Case 1. There exists at least a vertex u of G satisfying that the degree number of u is more than 2.
Subcase 1.1. N(u) has two adjacent vertices v, w.

In this case, clearly, G has C3. Then we will prove that G has C4. Otherwise, if G does not have C4, then, clearly, G[N(u)]
does not have a path of order 3. Let z ∈ N(u) \ {v, w}; since G is 2-connected, w or v must be adjacent to some vertex of
G − N[u]. Without loss of generality, assume that w is adjacent to some x ∈ V (G − N[u]); then, since G does not have C4,
we have the following: both v and x do not have a common neighbor in G − N[u]; any two distinct vertices of N(u) do not
have a common neighbor in G−N[u]; zx ∉ E(G). We consider the following two cases of the distance of vertices z and x. (1)
When d(z, x) = 2, clearly, N(v)∩N({x, z}) = {u, w}, and each of {x, z, v} is not adjacent to any of {x, z, v}, so we can check
that |N(x) ∪ N(z)| + d(v) ≤ |V (G)| − |{x, z, v}| + |{u, w}| ≤ n − 1, which contradicts the assumption of Lemma 2.1. (2).
When d(z, x) ≠ 2, similarly, we can check that |N(v) ∪N(z)| + d(x) ≤ |V (G)| − |{x, z, v}| + |{w}| ≤ n− 1, a contradiction.
Subcase 1.2. N(u) does not have two adjacent vertices.

Let v, w, z ∈ N(u). Since d(w, z) = 2, by the condition of the lemma that |N(w) ∪ N(z)| + d(v) ≥ n, we can check that
|V (G − N[u])| ≥ |N(u)| − 1.

(1) |V (G − N[u])| = |N(u)| − 1.
In this case, using |N(w) ∪ N(z)| + d(v) ≥ n for any three vertices w, z, v in N(u), each vertex of N(u) must be adjacent

to every vertex of G−N(u) (for example, if v ∈ N(u) is not adjacent to some vertex of G−N(u), let w, z ∈ N(u) \ {v}; then
we can check that |N(w)∪N(z)|+d(v) ≤ n−1, a contradiction), so G ∈ N(u)∨ (G−N(u)), where ‘‘∨’’ is the join operator.
Then, if G does not have C3, then G − N(u) is an empty subgraph; this implies that G = Kn/2,n/2. If G has C3, then, clearly, G
contains C3, C4.

(2) |V (G − N[u])| ≥ |N(u)|.
If G does not have C3, then, for any two vertices x, y of distance 2 in V (G − N[u]), using |N(x) ∪ N(y)| + d(u) ≥ n,

we can check that there are at most |N(u)| − 1 vertices of G − N[u] that are not adjacent to x and y, so there are at least
|V (G − N[u])| − (|N(u)| − 1) vertices of G − N[u] that are adjacent to x or y.
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Clearly, each vertex v of N(u) must be adjacent to at least two vertices of G − N[u]. Otherwise, if v is at most adjacent to
a vertex of G − N[u], letting w, z ∈ N(u) \ {v}, we can check that |N(w) ∪ N(z)| + d(v) ≤ n − 1, a contradiction. Since G
does not have C3, if v of N(u) is adjacent to two vertices x, y of G− N[u], then xy ∉ E(G), and vertex v is not adjacent to any
of N(x) ∪ N(y).

Since G is 2-connected, G − N[u] is not empty subgraph. Let q, r be two adjacent vertices of G − N[u]; if there
exist two vertices w, z of N(u) satisfying that both w, z are not adjacent to q (or r), then we have |N(w) ∪ N(z)| ≤

(|V (G − N[u])| − 1) + |{u}|. Letting v ∈ N(u) \ {w, z} be adjacent to two vertices x, y of G − N[u], we can check that
d(v) ≤ |V (G−N[u])|− |NG−N[u](x)∪NG−N[u](y)|+ |{u}| ≤ |V (G−N[u])|− (|V (G−N[u])|− (|N(u)|−1))+|{u}| ≤ |N(u)|.
So we have |N(w) ∪ N(z)| + d(v) ≤ (|V (G − N[u])| − 1) + |{u}| + |N(u)| ≤ |V (G − N(u) ∪ {u})| + |N(u)| ≤ n − 1, a
contradiction. This contradiction shows that q, like r , must be adjacent to at least one of {w, z}. Since |N(u)| ≥ 3, there exists
at least a vertex of N(u) that is adjacent to q and r , so we have C3, a contradiction. This contradiction shows that G contains
C3. It is also easy to see that there must exist two vertices of N(u) that have a common neighbor in G − N[u]. Otherwise,
we have |N(w) ∪ N(z)| + d(v) ≤ |V (G − N[u])| + 2|{u}| ≤ n − 1 for any three vertices w, z, v in N(u), a contradiction.
Without loss of generality, assume that w, z ∈ N(u) are adjacent to vertex x of G−N[u], so G also contains C4 = uwxzu, i.e.,
G contains C3, C4.
Case 2. d(u) = 2 for each u ∈ V (G).

In this case, G is the cycle Cn = x1x2 · · · xnx1 of order n. Since n ≥ 6, we have |N(x1) ∪ N(x3)| + d(x5) ≤ n − 1, a
contradiction. �

Lemma 2.2. If G is a 2-connected graph of order n ≥ 6, and DNC2 ≥ n, Cm is a cycle of order m, u is a vertex of G − Cm, and
|NCm(u)| ≥ 2, then the two following conditions hold.

(1) If xi+1, xj+1 ∈ N+

Cm(u) and d(xi+1, xj+1) ≤ 2 and xi+1, xj+1 are not adjacent to any of N[u] \ V (Cm), then there exists
xk ∈ NCm(u) satisfying that xi+1xk+1 or xj+1xk+1 ∈ E(G).

(2) If there exist xi+1, xj+1 ∈ N+

Cm(u) satisfying that d(xi+1, xj+1) ≥ 3 and {xi+1, xi+2, . . . , xj−1} ∩ NCm(u) = ∅, and xj+1 is
not adjacent to any of N[u] \ V (Cm), then there exists at least a vertex xk in P = xj+1xj+2 · · · xi such that xk ∈ N(xj+1) with
xk−1xi+1 or xk−1u ∈ E(G).

Clearly, (1) and (2) together imply that V (Cm) ∪ {u} structures a Cm+1.

Proof. First, we consider (1), i.e., that d(xi+1, xj+1) ≤ 2. (i) When d(xi+1, xj+1) = 1, we can take xk+1 as xi+1 or xj+1, so in
this case (1) of Lemma 2.2 holds. (ii) When d(xi+1, xj+1) = 2, suppose (1) of lemma is false, i.e., for any x ∈ N(u) ∪ {u},
when x ∉ V (Cm), x is not adjacent to xi+1, xj+1. When x = xk ∈ V (Cm), xk+1 is not adjacent to xi+1, xj+1, this implies that
|N(xi+1) ∪ N(xj+1)| ≤ n − |N(u) ∪ {u}|, so |N(xi+1) ∪ N(xj+1)| + d(u) ≤ n − 1, a contradiction.

Therefore, (1) holds, and we can construct cycle Cm+1 = xiuxkxk−1 · · · xi+1xk+1xk+2 · · · xi if xk+1xi+1 ∈ E(G) for some
xk ∈ NCm(u) or cycle Cm+1 = xjuxkxk−1 · · · xj+1xk+1xk+2 · · · xj if xk+1xj+1 ∈ E(G) for some xk ∈ NCm(u), two cycles both
consisting of u and Cm.

If (2) is false, i.e., for any x ∈ N(xj+1), when x ∉ V (Cm), x is not adjacent to vertex u, and, since d(xi+1, xj+1) ≥ 3, x is
also not adjacent to xi+1. When x = xk in path P = xj+1xj+2 · · · xi, then xk−1xi+1, xk−1u ∉ E(G), i.e., none of N−

P (xj+1) is
adjacent to xi+1, u. When x in path R = xi+1xi+2 · · · xj−1, since d(xi+1, xj+1) ≥ 3 and {xi+1, xi+2, . . . , xj−1} ∩ NCm(u) = ∅, x is
not adjacent to u, xi+1, i.e., none of NR(xj+1) is adjacent to xi+1, u. Also xi+1, u are not adjacent to xi+1, u. Clearly in the three
sets N−

P (xj+1),NR(xj+1) and {u, xi+1}, there are no two sets that have any common vertex, and |NR(xj+1)| + |N−

P (xj+1)| =

|NCm(xj+1)| − 1. Hence we can check that |N(u) ∪ N(xi+1)| ≤ n − |NR(xj+1)| − |N−

P (xj+1)| − |{xi+1, u}| ≤ n − d(xj+1) − 1;
this implies that |N(u) ∪ N(xi+1)| + d(xj+1) ≤ n − 1, a contradiction.

Therefore, (2) holds, and we can construct cycle Cm+1 =: xiuxjxj−1 · · · xi+1xk−1xk−2 · · · xj+1xkxk+1 · · · xi or
xjuxk−1xk−2 · · · xj+1xkxk+1 · · · xj, respectively.

Similarly, it is also easy to obtain the following result by considering the reverse direction on Cm from Lemma 2.2. �

Corollary 2.3. If G is a 2-connected graph of order n ≥ 6, and DNC2 ≥ n, Cm is a cycle of order m, u is a vertex of G − Cm, and
|NCm(u)| ≥ 2, then the two following conditions hold.
(1) If xi−1, xj−1 ∈ N−

Cm(u) and d(xi−1, xj−1) ≤ 2 and xi−1, xj−1 are not adjacent to any of N[u] \ V (Cm), then there exists
xk ∈ NCm(u) satisfying that xi−1xk−1 or xj−1xk−1 ∈ E(G).

(2) If there exist xi−1, xj−1 ∈ N−

Cm(u) satisfying that d(xi−1, xj−1) ≥ 3 and {xj+1, xj+2, . . . , xi−1} ∩ NCm(u) = ∅ and xj−1 is not
adjacent to any of N[u] \ V (Cm), then there exists at least a vertex xk in P = xj+1xj+2 · · · xi such that xk ∈ N(xj+1) with xk+1xi+1
or xk+1u ∈ E(G).

Now we prove the following Lemma 2.6. First, we state two propositions we need.

Proposition 2.4. Let Cm+1 = y1y2 · · · ym+1y1 be the cycle of order m + 1 obtained from (1) or (2) of Lemma 2.2. If v ∈

V (G − Cm+1) is adjacent to some yh in V (Cm+1) ∩ V (Cm), when yh ∈ {xi, xi+1, xj, xj+1, xk−1, xk, xk+1} described in Lemma 2.2,
then, clearly, yh+1 or yh−1 ∈ N±

Cm(v). When yh ∉ {xi, xi+1, xj, xj+1, xk, xk+1}, then, clearly, yh+1, yh−1 ∈ N±

Cm(v).
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Proposition 2.5. Let G be a 2-connected graph of order n ≥ 6 and DNC2 ≥ n, and let Cm be a cycle of order m. If Cm+1 =

y1y2 · · · ym+1y1 is the cycle of order m+ 1 obtained from (1) or (2) of Lemma 2.2 consisting of u and Cm, and if each w ∈ N±

Cm(y)
is not adjacent to any of N(y)\ V (Cm), where u, y ∈ V (G−Cm), and if there exists xj ∈ NCm(y) satisfying that this path xj−1xjxj+1

of Cm is also a path of Cm+1, and if there exists yh ∈ NCm+1(y) \ {xj} satisfying that yh+1 or yh−1 ∈ N±

Cm(y), then we can obtain
that Cm+2 consists of y and Cm+1.

That is, under the hypothesis of Proposition 2.5, there must exist yk, yh ∈ NCm+1(y) satisfying that both yk+1, yh+1 or both
yk−1, yh−1 are not adjacent to any of NG−Cm+1(y). (For example, let xj−1xjxj+1 = yi−1yiyi+1. If yh+1 ∈ N±

Cm(y), then yi+1, yh+1 are
not adjacent to any of N(y) \ V (Cm+1); if yh−1 ∈ N±

Cm(y), then yi−1, yh−1 are not adjacent to any of N(y) \ V (Cm+1).) Thus, the
cycle Cm+1 and graph G must satisfy the condition of Lemma 2.2, so we can obtain Cm+2 consisting of y and Cm+1 immediately
by Lemma 2.2.

Lemma 2.6. If G is a 2-connected graph of order n ≥ 6 and DNC2 ≥ n, and G has Cm, Cm+1, where m ≤ n− 2, then G has Cm+2.

Proof. Assume, to the contrary, that G does not have Cm+2.
Under the hypothesis, for each vertex x of G−Cm, then, clearly, none of N±

Cm(x) are adjacent to N(x)\V (Cm) (for example,
if there exists vertex xi of Cm = x1x2 · · · xmx1 adjacent to x, and xi+1 or xi−1 is adjacent to y ∈ N(x) \ V (Cm), then we obtain
cycle xixyxi+1xi+2 · · · xi or cycle xixyxi−1xi−2 · · · xi; all are Cm+2 consisting of V (Cm)∪{x, y}, a contradiction). Thenwe consider
the following cases.
Case 1. There exist x, y in G − Cm such that |NCm(x)| ≥ 2 and |NCm(y)| ≥ 2.
Subcase 1.1. NCm(x) = NCm(y) = {xi, xj}.

In this case, we have xy ∈ E(G). Otherwise, if xy ∉ E(G), let xk ∈ V (Cm) \ {xi, xj} satisfying that xk ∈ {xi+1, xj+1}; then, we
can check that |N(x)∪N(y)| ≤ n−|N[xk]\{xi, xj}|−|{x, y}| ≤ n−d(xk)−1, which implies that |N(x)∪N(y)|+d(xk) ≤ n−1,
a contradiction.

Thus, xy ∈ E(G); then, by (1) or (2) of Lemma 2.2, we construct Cm+1 by V (Cm) ∪ {x}. Clearly, Cm+1 contains xxi or xxj.
Since y is adjacent to x and xi, xj, we have Cm+2.
Subcase 1.2. NCm(x) ≠ NCm(y) or max{|NCm(x)|, |NCm(y)|} ≥ 3.
Subcase 1.2.1. xy ∈ E(G).
Subcase 1.2.1.1. NCm(x) ∩ NCm(y) ≠ ∅.

In this case, let xj ∈ NCm(x) ∩ NCm(y). We choose xi ∈ NCm(x) satisfying that {xi+1, xi+2, · · · , xj−1} ∩ NCm(x) =

∅. (I) If d(xi+1, xj+1) ≥ 3, by (2) of Lemma 2.2, then there exists xh ∈ NCm(xj+1) satisfying that xi+1xh−1 or
xxh−1 ∈ E(G). When xi+1xh−1, then Cm+2 = xixyxjxj−1 · · · xi+1xh−1xh−2 · · · xj+1xhxh+1 · · · xi. When xxh−1, then Cm+2 =

xjyxxh−1xh−2 · · · xj+1xhxh+1 · · · xj. (II) If d(xi+1, xj+1) = 2, by (1) of Lemma 2.2, then there exists xh ∈ NCm(x) satisfying that
xj+1xh+1 or xi+1xh+1 ∈ E(G). When xj+1xh+1 ∈ E(G), then Cm+2 = xjyxxhxh−1 · · · xj+1xh+1xh+2 · · · xj. When xi+1xh+1 ∈ E(G),
we construct Cm+1 = y1y2 · · · ym+1y1 by (1) of Lemma 2.2, Clearly, in this case, path xj−1xjxj+1 of Cm is also a path of Cm+1,
together with Proposition 2.5 and since |NCm(y)| ≥ 2, so there must exist vertex yr ∈ NCm+1(y) \ {xj} and without loss of
generality, assume that xj of Cm is labeled as some yh on Cm+1 satisfying {yh+1, yh+2, . . . , yr−1} ∩ NCm+1(y) = ∅, and both
yr+1, yh+1 or both yr−1, yh−1 are not adjacent to any of N(y) \ V (Cm+1), by (1) or (2) of Lemma 2.2, we can obtain Cm+2.
Subcase 1.2.1.2. NCm(x) ∩ NCm(y) = ∅.
Subcase 1.2.1.2.1. There exist consecutive xi, xi+1 on Cm satisfying that xi, xi+1 ∈ NCm(x) or NCm(y).

Without loss of generality, assume that xi, xi+1 ∈ NCm(x), so we construct Cm+1 = xixxi+1xi+2 · · · xi. Then, for each
xj ∈ NCm(y), path xj−1xjxj+1 of Cm is also a path of Cm+1. Since |NCm(y)| ≥ 2, by Proposition 2.5, we can obtain Cm+2.
Subcase 1.2.1.2.2. Subcase 1.2.1.2.1 does not exist

Using x and Cm we first construct Cm+1.
By hypothesis of not Cm+2 and not Subcase 1.2.1.2.1, together with xy is edge, so for any xi ∈ NCm(x), y is not adjacent to

xi−1, xi, xi+1. Since |NCm(y)| ≥ 2, at least there exists a vertex xj ∈ NCm(y) satisfying that path xj−1xjxj+1 of Cm is also a path
of Cm+1, by (1) or (2) of Lemma 2.2, we can obtain Cm+2.
Subcase 1.2.2. xy ∉ E(G).
Subcase 1.2.2.1. There exist consecutive xi, xi+1 on Cm satisfying that xi, xi+1 ∈ NCm(x) or NCm(y).

Without loss of generality, assume that xi, xi+1 ∈ NCm(x). (i) If NCm(y) ≠ {xi, xi+1}, we construct Cm+1 = xixxi+1xi+2 · · · xi.
Then if y is adjacent to two consecutive vertices of Cm+1, we have Cm+2. Otherwise, if y is not adjacent to any two consecutive
vertices of Cm+1. Since this is not Subcase 1.1, there exists at least xj ∈ NCm(y) satisfying that path xj−1xjxj+1 of Cm is also a
path of Cm+1, by Proposition 2.5, we have Cm+2. (ii) If NCm(y) = xi, xi+1, we construct Cm+1 = xiyxi+1xi+2 · · · xi consisting of
Cm and y. Then, if x is adjacent to two consecutive vertices of Cm+1, we have Cm+2. Otherwise, since this is not Subcase 1.1,
there exists at least xj ∈ NCm(x) satisfying that path xj−1xjxj+1 of Cm is also a path of Cm+1, by Proposition 2.5, we have Cm+2
consisting of Cm+1 and x.
Subcase 1.2.2.2. Subcase 1.2.2.1 does not exist.

In this case, if d(xh+1, xk+1) ≥ 3 for some two vertices xh+1, xk+1 ∈ N+

Cm(x), then theremust exist at least three vertices in
N+

Cm(x) that are adjacent to xk+1 (otherwise, since x, xh+1, xk+1 is a independent vertex set and since d(xh+1, xk+1) ≥ 3, xh+1
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and any of x, xh+1 do not have any common neighbor in G − Cm, so we can check that |N(x) ∪ N(xh+1)| + d(xk+1) ≤ n − 1,
a contradiction). We consider the following cases.

(1) When xi ∈ NCm(x) ∩NCm(y). Since this is not Subcase 1.2.2.1, xxi+1, yxi+1 ∉ E(G), and since each of {x, y} and xi+1 do not
have any commonneighbor inG−Cm (otherwise, it is easy to obtain a Cm+2, a contradiction). By the assumption of the lemma
that |N(x)∪N(y)|+d(xi+1) ≥ n and {x, y, xi+1} is a independent vertex set, |N(x)∪N(y)|+d(xi+1) ≥ |V (G)|+S−|x, y, xi+1| ≥

n, where S is the number of common neighbors of xi+1 and any of {x, y} in Cm. Thus, the number of common neighbors of xi+1
and any of {x, y} is at least 3. Let T be the vertex subset ofN+

Cm(x)∩N+

Cm(y) that is adjacent to xi+1. Clearly, |T | ≥ 3 (otherwise,
this does not satisfy the assumption of the lemma that |N(x) ∪ N(y)| + d(xi+1) ≥ n). Without loss of generality, assume
that |T ∩ N+

Cm(x)| ≥ 2. Using |NCm(y) \ {xi}| ≥ 1, we can construct a Cm+1 consisting of x and Cm satisfying that there exists
some xj ∈ NCm(y) such that path xj−1xjxj+1 of Cm is also a path of Cm+1, by Proposition 2.4, we have Cm+2. (For example, let
xh+1, xk+1 ∈ T ∩ N+

Cm(x); if xh or xh+1 is adjacent to y, we construct Cm+1 = xxkxk−1 · · · xi+1xk+1xk+2 · · · xix consisting of x
and Cm satisfying that the paths xh−1xhxh+1 and xhxh+1xh+2 of Cm all also are paths of Cm+1. If xk or xk+1 is adjacent to y, we
construct Cm+1 = xxhxh−1 · · · xi+1xh+1xh+2 · · · xix consisting of x and Cm satisfying that the paths xk−1xkxk+1 and xkxk+1xk+2
of Cm all also are paths of Cm+1. If y is not adjacent to any of {xh, xh+1, xk, xk+1}, we construct a Cm+1 consisting of x and Cm
and it must be satisfied that path xj−1xjxj+1 of Cm is also a path of Cm+1 for any xj ∈ NCm(y) \ {xi}, by Proposition 2.5, we
obtain Cm+2.)

(2) NCm(x) ∩ NCm(y) = ∅. Since there exist xh+1, xk+1 ∈ N+

Cm(x) with xh+1xk+1 ∈ E(G), we can construct Cm+1 =:

xxkxk−1 · · · xh+1xk+1xk+2 · · · xhx consisting of x and Cm. (2–1) If y is not adjacent to xh+1 or xk+1, using |NCm(y)| ≥ 2 and
the fact that y is not adjacent to xh and xk, there must exist some xj ∈ NCm(y) such that path xj−1xjxj+1 of Cm is also
a path of Cm+1, by Proposition 2.5, we obtain Cm+2. (2–2) If y is adjacent to xh+1 and xk+1, then it is easy to obtain a
Cm+2 =: xxkxk−1 · · · xh+1yxk+1xk+2 · · · xhx consisting of x, y and Cm.

Case 2. There exists at most a vertex x in G − Cm such that |NCm(x)| ≥ 2.
In this case, if G does not have any Cm+2, we claim that if y ∈ V (G − Cm) and NCm(y) = {xi}, then G[Cm − xi] is complete

subgraph of orderm − 1.
That is, since G is 2-connected, there must exist at least a vertex y ∈ V (G−Cm) such that |NCm(y)| = 1. Let NCm(y) = {xi}.

Then we first prove that xi−1xi+1 ∈ E(G); otherwise, if xi−1xi+1 ∉ E(G), since not Cm+2, if w ∈ N[y] \ {xi} then w is not
adjacent to xi+1, xi−1, and hence we can check that |N(xi+1) ∪ N(xi−1)| ≤ n − |N[y] \ {xi}| − |{xi+1, xi−1}|, a contradiction.

Then, similarly, we have xi−1xi+2 ∈ E(G); otherwise, if xi−1xi+2 ∉ E(G), since not Cm+2, we can see if w ∈ N[y] \ {xi};
then w is not adjacent to xi+2, xi−1 (for example, if wxi+2 ∈ E(G), we have Cm+2 = xi−1xi+1xiywxi+2xi+3 · · · xi−1). Hence we
have |N(xi+2) ∪ N(xi−1)| ≤ n − |N[y] \ {xi}| − |{xi+2, xi−1}|, a contradiction.

We use induction, under the assumption xi−1xi+r ∈ E(G), then similarly we have xi−1xi+r+1 ∈ E(G).
Thus, xi+1, xi+2, xi+3, . . . , xi−3, xi−2 are all adjacent to xi−1. Then, clearly, for each pair xh, xk in Cm \ {xi}, d(xh, xk) ≤ 2. If

xhxk ∉ E(G). Since, clearly, ifw ∈ N[y] \ {xi},nw is not adjacent to xh, xk (for example,wxh ∈ E(G), together with xi−1xh−1 ∈

E(G), so we have Cm+2 = xi−1xh−1xh−2 · · · xiywxhxh+1 · · · xi−1). Hence, we have |N(xh)∪N(xk)| ≤ n−|N[y]\{xi}|−|{xh, xk}|,
a contradiction.

Therefore, G[V (Cm) \ {xi}] is a complete subgraph of orderm − 1.
Then let P = y1y2 · · · yk be a path of G−Cm whose two end-vertices y1, yk are adjacent to two vertices xi, xj of Cm with the

order k of path P being as small as possible. Without loss of generality, assume that NCm(y1) = {xi}, so G[Cm − xi] contains a
complete subgraph of orderm − 1.

Subcase 2.1. k = 2.
In this case, since G[Cm − xi] is a complete subgraph of order m − 1 and xi−1xj−1 ∈ E(G) (possibly xj−1 = xi), we have

Cm+2 = xi−1xj−1xj−2 · · · xiy1y2xjxj+1 · · · xi−1, a contradiction.

Subcase 2.2. k = 3.
In this case, since m ≥ 3, max{|{xi, xi+1, . . . , xj}|, |{xj, xj+1, . . . xi}|} ≥ 3. If max {|{xi, xi+1, . . . xj}|, |{xj, xj+1,

. . . xi}|} = 3, without loss of generality, assume that |{xi, xi+1, . . . xj}| = 3; then cycle Cm+2 consists of path Cm \ {xi+1} and
path y1y2y3, whereV (Cm+2) = (V (Cm)∪{y1, y2, y3})\{xi+1}, a contradiction. Ifmax{|{xi, xi+1, . . . xj}|, |{xj, xj+1, . . . xi}|} ≥ 4,
without loss of generality, assume that |{xi, xi+1, . . . xj}| ≥ 4; since xj−2 is adjacent to xi−1 (possibly xi−1 = xj), we can
obtain Cm+2 = xjxj+1 · · · xi−1xj−2xj−3xiy1y2y3xj consisting of vertex set V (Cm) \ {xj−1} and path y1y2y3, where V (Cm+2) =

(V (Cm) ∪ {y1, y2, y3}) \ {xj−1}, a contradiction.

Subcase 2.3. k ≥ 4.
Let xi, xj in Cm be adjacent to y1, yk, respectively, and |NCm(y1)| = |{xi}|. Let xt ∈ V (Cm) \ {xi, xj}, so for any w ∈

N[xt ]\{xi, y4}, whenw ∉ V (Cm), since k ≥ 4, thenw is not adjacent to y1, y3. Otherwise, ifw is adjacent to y1, in this casewe
have path P = wy1 of order 2 of G − Cm whose two end-vertices w, y1 are adjacent to two vertices of Cm, respectively; this
contradicts our choice that k is as small as possible.Whenw is adjacent to y3, thenwy3y4 · · · yk is a path of order less than k of
G−Cm whose two end-verticesw, yk are adjacent to two vertices of Cm, respectively, a contradiction.Whenw ∈ V (Cm)\{xi},
w is not adjacent to y1, y3. This is because, since NCm(y1) = {xi}, wy1 ∉ E(G). If wy3 ∈ E(G), then y1y2y3 is a path of order
less than k of G − Cm whose two end-vertices y1, y3 are adjacent to two vertices xi, w of Cm, respectively, a contradiction.
Hence we have |N(y1) ∪ N(y3)| ≤ n − |N[xt ] \ {xi, y4}| − |{y1, y3}|, a contradiction. �
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Therefore, this completes the proof of Lemma 2.6.
Note. A pancyclic graph is an important subject in graph theory and related areas. Recently, some related interesting works
on pancyclicity have been published in [4,5,8,11,6,10,9,7,15]; among them,many have beenwidely used in computer science
as well as information science.
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