
Referee’s report on the paper
“Weakly Ore type condition d(x)+d(y) ≥ n− 1 to vertices at distance two for pancyclicity”

by Zhao Kewen, Yue Lin and Hongjian Lai

This paper strengthens two known results giving Ore-type conditions for a graph to be
hamiltonian or pancyclic, respectively. I believe that these results are new. They seem
interesting, and would be worth publishing if they were given well-presented proofs.

Unfortunately the paper is extremely badly written. Not only is the English language
poor, but the presentation of the mathematics is also poor, as well as being full of typos.
It is consequently very difficult to follow. I expect the proofs are correct, but it has taken
me so long to understand the proof of Theorem 1.7 (which I could only do by rewriting it)
that I have not attempted to follow the proofs of the lemmas needed for Theorem 1.6. The
paper needs completely rewriting by someone whose natural language is English, who has
a better understanding of how to set out mathematical arguments intelligibly, and who is
much more careful over proofreading. I would need to see a revised version before making a
recommendation.

Suggestions for the authors:

For the title, I suggest something like ‘A weak Ore-type condition for pancyclicity involv-
ing vertices at distance two’.

The purpose of an abstract is to tell the reader what is done in the paper. This is not
the place to include the history of the subject. I suggest something along the following lines.

Abstract. Let G be a graph of order n. It is proved that if d(x) + d(y) ≥ n − 1
for every pair of vertices x, y of G that are distance two apart, then G is pancyclic or
G ∈ {G(n−1)/2 ∨ K̄(n+1)/2,Kn/2,n/2,Kn/2,n/2 − e, C5}. This strengthens known results of
Ainouche and Christofides and of Aldred, Holton and Zhang, in which the degree-sum
condition was imposed on all pairs of nonadjacent vertices, not just those at distance
two.

From the Abstract up to Theorem 1.5 you write KC
(n+1)/2 ∨G(n−1)/2, and you then switch

to writing G(n−1)/2∨KC
(n+1)/2. It doesn’t matter which order you use, but please be consistent.

It is more usual to represent the complement of G by Ḡ; if you want to use a superscript C,
then it should be in roman type.

The string of definitions in the opening paragraph should be kept as short as possible.
Notation that is not used until Section 2 can be defined at the start of Section 2. It seems
that δ is used only once, unnecessarily, in Theorem 1.1, and Cn

m-pancyclic is not used at all;
if so, they should not be defined. However, the join is used on page 2 and not defined until
page 3, and d(x, y) is not defined at all; they should be defined before they are used.

I suggest you amalgamate Theorems 1.6 and 1.7, but also interchange them, so that in
each pair of results with the same hypotheses, the one about hamiltonicity always precedes
the one about pancyclicity.
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Corollary 1.8 already follows from Theorem 1.5. If you want to include it, you should
say this; but I would suggest that you delete it.

At the end of the paper, ‘Note that 1:’ should be ‘Note 1.’ However, your use of ∨
here is non-standard, and you do not explain what condition G∗

m must satisfy. If you are
keen to include this note, you should explain it more carefully, and include it in Section 1;
otherwise you should delete it. Note 2 is rather trivial, but it is easily included in Section 1.

The order in Section 2 seems very strange. The proof of Theorem 1.7 is quite straight-
forward, from first principles, so why is it sandwiched between Lemma 2.2 and Lemma 2.3?
It would be better to prove it first, then prove the lemmas, and then make your observation
that Theorem 1.6 follows easily from the lemmas and Theorem 1.7.

I cannot see anywhere that Lemma 2.1 is used. If it is not used, then you should not
include it. If you do include it, it would be better to label its parts (a), (b), etc., rather than
(1), (2), etc., so that there is no possible confusion with equations labelled (1), (2).

Lemma 2.4 is wrong (it omits K2,3 and K2 ∨ K̄3), but it is also unnecessary; you can say
all that needs saying in one sentence at the start of the proof of Theorem 1.6.

It is better not to use Cm to denote both a generic m-cycle and a specific m-cycle used
in the proof. Calling the latter C would also avoid many double subscripts.

(In the proof of Theorem 1.7) the statement ‘v is not adjacent to xi+1 or xj+1’ means
that v is not adjacent to xi+1 AND v is not adjacent to xj+1. What you mean is that v is
not adjacent to both xi+1 and xj+1 (but it may be adjacent to one of them). This needs
careful rewording.

Here is my suggestion for the first part of the paper.

1 Introduction

We consider a finite undirected simple graph G with vertex-set E(G) and edge-set
V (G). If x, y ∈ V (G) then d(x) and d(x, y) denote the degree of x and the distance
between x and y, respectively. If G and H are graphs, then Ḡ is the complement of G,
and G ∨H is the join of disjoint copies of G and H. The complete graph and cycle of
order n are denoted by Kn and Cn, and Kp,q = K̄p ∨ K̄q is a complete bipartite graph.
We write G ∈ G(n−1)/2 ∨ K̄(n+1)/2 if G is the join of K̄(n+1)/2 and any graph of order
(n − 1)/2.

A graph of order n is pancyclic if it contains cycles of every length k, 3 ≤ k ≤ n.
Other terminology and notation can be found in [4].

The following results are well known.

Theorem 1.1. (Dirac [5]) If G is a graph of order n with minimum degree at least
n/2, then G is Hamiltonian.
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Theorem 1.2. (Ore [7]) If G is a graph of order n ≥ 3, and d(x) + d(y) ≥ n for each
pair of nonadjacent vertices x, y ∈ V (G), then G is Hamiltonian.

Theorem 1.3. (Bondy [3]) If G is a graph of order n ≥ 3, and d(x) + d(y) ≥ n for
each pair of nonadjacent vertices x, y ∈ V (G), then G is pancyclic or G = Kn/2,n/2.

The next two theorems are strengthenings of Theorems 1.2 and 1.3 in which Ore’s
condition is weakened by one. The condition of 2-connectedness is needed in order to
rule out graphs of the form K1 ∨ (Kr ∪ Kn−1−r).

Theorem 1.4. (Ainouche and Christofides [1]) If G is a 2-connected graph of order
n ≥ 3, and d(x)+ d(y) ≥ n− 1 for each pair of nonadjacent vertices x, y ∈ V (G), then
G is Hamiltonian or G ∈ G(n−1)/2 ∨ K̄(n+1)/2.

Theorem 1.5. (Aldred, Holton and Zhang [2]) If G is a 2-connected graph of order
n ≥ 3, and d(x)+ d(y) ≥ n− 1 for each pair of nonadjacent vertices x, y ∈ V (G), then
G is pancyclic or G ∈ {G(n−1)/2 ∨ K̄(n+1)/2,Kn/2,n/2, C5}.

In this paper we prove the following result, which strengthens Theorems 1.4 and 1.5
by imposing the degree-sum condition only on pairs of vertices at distance two.

Theorem 1.6. Let G be a 2-connected graph of order n ≥ 3, in which d(x) + d(y) ≥
n − 1 for each pair of vertices x, y ∈ V (G) such that d(x, y) = 2. Then the following
hold.
(a) G is Hamiltonian or G ∈ G(n−1)/2 ∨ K̄(n+1)/2.
(b) G is pancyclic or G ∈ {G(n−1)/2 ∨ K̄(n+1)/2,Kn/2,n/2,Kn/2,n/2 − e, C5}.

Clearly, Theorem 1.6(a) implies Theorem 1.4 and Theorem 1.6(b) implies Theo-
rem 1.5.

2 Proof of Theorem 1.6

We will use the following notation. If H and S are subsets of V (G) or subgraphs of G,
we denote by NH(S) the set of vertices in H which are adjacent to some vertex in S,
and set dH(S) = |NH(S)|. If u ∈ V (G) then we shorten NG({u}) to N(u). We denote
by G−H [and G[S]? – ever used?] the induced subgraphs of G on V (G) \ V (H) [and
S?], respectively. If C = x1x2 . . . xmx1 is a cycle of order m, we write N+

C (u) = {xi+1 :
xi ∈ NC(u)}, N−

C (u) = {xi−1 : xi ∈ NC(u)}, and N±

C (u) = N+
C (u) ∪ N−

C (u), where
subscripts are taken modulo m.
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Let G be a graph of order n satisfying the hypotheses of Theorem 1.6.

Proof of Theorem 1.6(a). Assume that G is not Hamiltonian, and let C =
x1x2 . . . xmx1 be a longest cycle of G. Choose vertices u ∈ V (G − C) and xi ∈ V (C)
such that uxi ∈ E(G), let H be the component of G − C containing u, and let
xj ∈ NC(H) \ {xi}, which exists since G is 2-connected.

Claim 1. u is adjacent to every vertex in V (G − C) \ {u}, so that H = G − C.

Proof. Let P be a path in H connecting u to a neighbor of xj. (Possibly V (P ) =
{u}.) Clearly no vertex of H is adjacent to xi+1, as this would give a longer cycle
than C. Suppose some vertex v ∈ V (G − C) \ {u} is not adjacent to u.

If v is adjacent to both xi+1 and xj+1, then v /∈ V (P ) since no vertex of H is
adjacent to xi+1, and so xiPxjxj−1 . . . xi+1vxj+1xj+2 . . . xi is a longer cycle than C.
This is a contradiction, and so w.l.o.g. we may assume that v is not adjacent to xi+1.
Since C is a longest cycle, it is easy to see that xi+1 is not adjacent to any vertex in
NG−C(u) or N+

C (u) (that is, if uxh ∈ E(G) then xi+1xh+1 /∈ E(G)). Thus

N(xi+1) ⊆ V (G) \ (N+
C (u) ∪ NG−C(u) ∪ {u, v}),

so that d(xi+1) + d(u) ≤ n − 2. But this contradicts the degree-sum hypothesis of
Theorem 1.6, since clearly d(u, xi+1) = 2; and this contradiction proves Claim 1. !

Claim 2. m = n − 1 and V (G − C) = {u}, and u has a neighbor xk ∈ V (C) \ {xi}
such that d(xi+1) + d(xk+1) = n − 1.

Proof. Recall that xi+1 has no neighbor in H, and H = G − C by Claim 1. Since
d(u, xi+1) = 2, and vertices u, xi+1, xj+1 are not adjacent to either u or xi+1, it follows
from the degree-sum hypothesis of the theorem that there is a vertex xk ∈ V (C) (k &= i)
such that xk is adjacent to both u and xi+1, so that d(xi+1, xk+1) = 2.

We now use a standard argument. Let A = {xi+2, xi+3, . . . , xk} and B =
{xk+2, xk+3, . . . , xi}. If xh ∈ A ∩ N(xi+1) then xh−1 /∈ N(xk+1), since otherwise we
easily find a longer cycle than C. Thus the number of edges between {xi+1, xk+1} and
A is at most |A| + 1. Similarly, the number of edges between {xi+1, xk+1} and B is at
most |B| + 1. Since there are no edges between {xi+1, xk+1} and any vertex in the set
V (H) ∪ {xi+1, xk+1}, it follows from the hypothesis of the theorem that

n − 1 ≤ d(xi+1) + d(xk+1) ≤ |A| + 1 + |B| + 1 = |V (C)| = m.

Since m < n, it follows that equality holds throughout, which proves Claim 2. !

Claim 3. d(u) = (n − 1)/2.
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Proof. Since each two of u, xi+1, xk+1 are at distance two, the hypothesis of the
theorem implies that d(u) + d(xi+1) ≥ n − 1 and d(u) + d(xk+1) ≥ n − 1, which by
Claim 2 implies that d(u) ≥ (n − 1)/2. But if d(u) > (n − 1)/2 then we can insert u
into C to give a longer cycle, and this contradiction proves Claim 3. !

Let X = N+
C (u)∪{u} and Y = V (G)\X. It follows from Claim 3 that the neighbors

of u are alternate vertices of C, and that X is an independent set of (n+1)/2 vertices,
each of which, other than u, is at distance two from u. Thus N(X) ⊆ Y , so that
each vertex in X has degree at most |Y | = (n − 1)/2. By Claim 3, for the degree-sum
hypothesis to hold, each vertex in X must have degree (n − 1)/2 and be adjacent to
all vertices in Y , which means that G ∈ G(n−1)/2 ∨ K̄(n+1)/2. This completes the proof
of Theorem 1.6(a). !

We now turn to the proof of Theorem 1.6(b). Since G is 2-connected, every vertex
has degree at least 2, and so if n ≤ 5 then the result follows from Theorem 1.5. Thus
we may assume that n ≥ 6. We need two lemmas.

Lemma 2.1. If G contains a cycle of length m ≥ 5, then G contains a cycle of length
m − 2.

Lemma 2.2. If G contains no cycle of length n− 1, then G ∈ {Kn/2,n/2,Kn/2,n/2 − e}.
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