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In 2005, Rahman and Kaykobad proved that if G is a connected graph of order n such that
d(x) + d(y) + d(x, y) � n + 1 for each pair x, y of distinct nonadjacent vertices in G , where
d(x, y) is the length of a shortest path between x and y in G , then G has a Hamiltonian
path [Inform. Process. Lett. 94 (2005) 37–41]. In 2006 Li proved that if G is a 2-connected
graph of order n � 3 such that d(x)+d(y)+d(x, y) � n+2 for each pair x, y of nonadjacent
vertices in G , then G is pancyclic or G = Kn/2,n/2 where n � 4 is an even integer [Inform.
Process. Lett. 98 (2006) 159–161]. In this work we prove that if G is a 2-connected graph
of order n such that d(x) + d(y) + d(x, y) � n + 1 for all pairs x, y of distinct nonadjacent
vertices in G , then G is pancyclic or G belongs to one of four specified families of graphs.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

We consider only simple graphs, i.e., graphs with no
multi-edges and no self loops, and every reference to a
cycle or a path, unless otherwise specified, indicates, re-
spectively, a simple cycle or a simple path. For a graph G ,
let V (G) be the vertex set of G and E(G) the edge set of
G . The complete graph of order n is denoted by Kn , and
the complete bipartite graph with the partite sets A and B
with |A| = p and |B| = q is denoted by K p,q . For two ver-
tices u and v , let d(u, v) be the length of a shortest path
between vertices u and v in G , that is, d(u, v) is the dis-
tance between u and v . The minimum degree of a graph G
is denoted by δ(G) (or δ if the graph G under consider-
ation is understood). For a subgraph H of a graph G and
a subset S of V (G), let NH (S) be the set of vertices in H
that are adjacent to some vertex in S and let the cardinal-
ity of NH (S) be |NH (S)| = dH (S). In particular, if H = G
and S = {u}, then let NG(S) = N(u), which is the neigh-
borhood of u in G . In this case, the cardinality of NG(S) is
denoted by dG(S) = |N(u)| = d(u), which is the degree of u.

* Corresponding author.
E-mail address: kewen@bxemail.com (K. Zhao).

Furthermore, let G − H and G[S] denote the subgraphs of
G induced by V (G) − V (H) and S , respectively. For each
integer m � 3, let

Cm = x1x2 . . . xmx1

denote a cycle of length m and define

N+
Cm

(u) = {
xi+1: xi ∈ NCm (u)

}
,

N−
Cm

(u) = {
xi−1: xi ∈ NCm (u)

}
,

N±
Cm

(u) = N+
Cm

(u) ∪ N−
Cm

(u),

where subscripts are expressed as integers modulo m.
A cycle in a graph G that contains every vertex of G

is called a Hamiltonian cycle of G . A Hamiltonian graph is a
graph that contains a Hamiltonian cycle. A path in a graph
G that contains every vertex of G is called a Hamiltonian
path in G . A graph G is said to be r-pancyclic if G contains
a cycle of length k for each k with r � k � n. A 3-pancyclic
graph is simply called a pancyclic graph. We refer to the
book [1] for graph theory notation and terminology not
described in this paper.

It is well known that the Hamiltonian graph problem is
NP-complete [2]. In 2005, Rahman and Kaykobad [5] ob-
tained the following result:

0020-0190/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
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Theorem 1.1. (See Rahman and Kaykobad, 2005 [5].) If G is
a connected graph of order n � 3 such that d(x) + d(y) +
d(x, y) � n + 1 for each pair x, y of nonadjacent vertices in G,
then G has a Hamiltonian path.

In 2006, Li [3] considered other Hamiltonian properties
of graphs under same or similar conditions as Theorem 1.1.
In order to present results obtained by Li in [3], we first
introduce some additional definitions. For two graphs F
and H the join F ∨ H of F and H is the graph constructed
from F and H by adding all edges joining the vertices of
F and the vertices of H . In [3] two classes Cn and Dn of
graphs of order n are defined as follows. A graph G of or-
der n belongs to the family Cn if the vertex set of G is
V (G) = V (K1)∪ V (G1)∪ V (G2), where K1 is a trivial graph,
G1 = K p1 ∨ Kq1 = K p1+q1 is the complete graph of order
p1 + q1 with p1 � 1 and q1 � 0, G2 = K p2 ∨ Kq2 is the
complete graph of order p2 + q2, p2 � 1 and q2 � 0, and
V (K1), V (G1), and V (G2) are pairwise disjoint sets with
n = p1 + q1 + p2 + q2 + 1, and the edge set of G is

E(G) = E(G1) ∪ E(G2)

∪ {
ab: a ∈ V (K1),b ∈ V (K p1 ) ∪ V (K p2)

}
.

The family Dn of graphs of order n is defined as
{

G: K p,p+1 ⊆ G ⊆ K p ∨ (p + 1)K1,∣∣V (G)
∣∣ = 2p + 1 = n � 3

}
,

where (p + 1)K1 is the complement of K p+1, that is, the
empty graph of order p + 1.

Theorem 1.2. (See Li, 2006 [3].) Let G be a connected graph
of order n � 6. If d(x) + d(y) + d(x, y) � n + 1 for each pair
x, y of nonadjacent vertices of G, then G is Hamiltonian or G ∈
Cn ∪Dn.

Theorem 1.3. (See Li, 2006 [3].) If G is a 2-connected graph of
order n � 3 such that d(x) + d(y) + d(x, y) � n + 2 for each
pair x, y of nonadjacent vertices in G, then G is pancyclic or
G = Kn/2,n/2 where n � 4 is an even integer.

In this paper, we present the following result, which
improves Theorem 1.3.

Theorem 1.4. Let G be a 2-connected graph of order n � 6. If
d(x) + d(y) + d(x, y) � n + 1 for all pairs x, y of nonadjacent
vertices in G, then either G is pancyclic or

G ∈ Cn ∪Dn ∪ {Kn/2,n/2, Kn/2,n/2 − e: n is even}.

2. Proofs of main results

The proof of Theorem 1.4 is based on the following lem-
mas or theorem.

Lemma 2.1. Let Cm = x1x2 . . . xmx1 be a cycle length m of a
graph G and let v ∈ V (Cm). If there does not exist Cm−2 con-
taining v in G, then, for each integer i with1 � i � m, the fol-
lowing hold.

(1) If v /∈ {xi+1, xi+2}, then xi xi+3 /∈ E(G).

(2) If v /∈ {xi+1, xi+2, xi+3}, then NG−Cm (xi)∩ NG−Cm (xi+4) =
∅.

(3) If v 	= xi+1 and xi xi+2 ∈ E(G), then when v 	= x j+1 we
have x j x j+2 /∈ E(G) and when v /∈ {x j+1, x j+2} we have
NG−Cm (x j) ∩ NG−Cm (x j+3) = ∅ for any j 	= i, i + 1. Simi-
larly, if v /∈ {xi+1, xi+2} and NG−Cm (xi) ∩ NG−Cm (xi+3) 	=
∅, then when v 	= x j+1 we have x j x j+2 /∈ E(G) and when
v /∈ {x j+1, x j+2} we have NG−Cm (x j) ∩ NG−Cm (x j+3) = ∅
for any j 	= i, i + 1, i + 2.

(4) If xi xh ∈ E(G), where h 	= i + 1, i + 2, then when v /∈
{xi+1, xi+2} we have xi+3xh+1 /∈ E(G) and when v /∈
{xi+1, xh+1} we have xi+2xh+2 /∈ E(G).

Proof. Let i be an integer with 1 � i � m. Recall that the
subscripts of vertices are expressed as integers modulo m.

(1) If xi xi+3 ∈ E(G), then there exists Cm−2 = x1x2 . . .

xi xi+3 . . . xmx1 in G containing v , a contradiction.
(2) If there is u ∈ NG−Cm (xi) ∩ NG−Cm (xi+4) 	= ∅, then

we get Cm−2 = x1x2 . . . xiuxi+4 . . . xmx1 in G containing v , a
contradiction.

(3) First suppose that xi xi+2 ∈ E(G) with v 	= xi+1, and
x j x j+2 ∈ E(G) with v 	= x j+1 for some j 	= i, i + 1. Thus if
j > i, then we obtain Cm−2 = x1x2 . . . xi xi+2xi+3 . . . x j x j+2
x j+3 . . . xmx1 in G containing v; while if j < i, we obtain
Cm−2 = x1x2 . . . x j x j+2x j+3 . . . xi xi+2xi+3 . . . xmx1 in G con-
taining v . In each case, a contradiction is produced.

Next, suppose that xi xi+2 ∈ E(G) with v 	= xi+1, and
NG−Cm (x j) ∩ NG−Cm (x j+3) 	= ∅ with v /∈ {x j+1, x j+2} for
some j 	= i, i + 1. Let u ∈ NG−Cm (x j) ∩ NG−Cm (x j+3). Thus
if j > i, then we obtain Cm−2 = x1x2 . . . xi xi+2xi+3 . . .

x jux j+3x j+4 . . . xmx1 in G containing v; while if j < i, then
we obtains Cm−2 = x1x2 . . . x jux j+3x j+4 . . . xi xi+2xi+3 . . .

xmx1 in G containing v . Again, a contradiction is produced
in each case.

Now suppose that u ∈ NG−Cm (xi) ∩ NG−Cm (xi+3) 	= ∅
with v /∈ {xi+1, xi+2}, and x j x j+2 ∈ E(G) with v 	= x j+1
for some j 	= i, i + 1, i + 2. Thus if j > i, then we ob-
tain Cm−2 = x1x2 . . . xiuxi+2xi+3 . . . x j x j+2x j+3 . . . xmx1 in G
containing v; while if j < i, then we obtain Cm−2 =
x1x2 . . . x j x j+2x j+3 . . . xiuxi+2xi+3xmx1 in G containing v .
A contradiction is produced in each case.

Finally, suppose that u ∈ NG−Cm (xi) ∩ NG−Cm (xi+3) 	= ∅
with v /∈ {xi+1, xi+2}, and w ∈ NG−Cm (x j)∩NG−Cm (x j+3) 	= ∅
with v /∈ {x j+1, x j+2} for some j 	= i, i + 1, i + 2. Thus
if j > i, then we obtain Cm−2 = x1x2 . . . xiuxi+3xi+4 . . .

x j wx j+3x j+4 . . . xmx1 in G containing v; while if j < i, then
we obtain Cm−2 = x1x2 . . . x j wx j+3x j+4 . . . xiuxi+3xi+4 . . .

xmx1 in G containing v . In each case, a contradiction is
produced in each case.

(4) If xi xh ∈ E(G), where h 	= i + 1, i + 2 and xi+3xh+1 ∈
E(G) (say h � i), then we obtain Cm−2 = x1x2 . . . xi xhxh−1
. . . xi+3xh+1xh+2 . . . xmx1 in G containing v , a contradic-
tion. On the other hand, if xi xh ∈ E(G), where h 	=
i + 1, i + 2 and xi+2xh+2 ∈ E(G), then we obtain Cm−2 =
x1x2 . . . xi xhxh−1 . . . xi+2xh+2xh+3 . . . xmx1 in G containing v ,
a contradiction again.

This completes the proof of Lemma 2.1. �
Lemma 2.2. Let G be a 2-connected graph of order n � 6 such
that d(x) + d(y) � n − 1 for each pair x, y of nonadjacent ver-
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tices in G with d(x, y) = 2. If there exists an m-cycle Cm, where
m � 5, in G, then G contains Cm−2 .

Proof. Let Cm = x1x2 . . . xmx1. Assume, to the contrary, that
there does not exist any Cm−2 in G . We consider the fol-
lowing four cases, according to the values of m.

Case 1. m = 5. Let C5 = xi xi+1xi+2xi+3xi+4xi . Since G con-
tains no C3, it follows that xi xi+2 /∈ E(G) for any xi in
C5 (for otherwise, if xi xi+2 ∈ E(G), then we obtain C3 =
xi xi+1xi+2xi , a contradiction). Furthermore, N(xi)∩V (C5) =
{xi−1, xi+1}.

Since d(xi) + d(xi+2) � n − 1 and |N(xi) ∩ V (C5)| =
|N(xi+2) ∩ V (C5)| = 2, it follows that |NG−Cm (xi)| +
|NG−Cm (xi+2)| � n − 5.

Subcase 1.1. |N(xi) ∩ V (G − Cm)| � |V (G − Cm)|/2 + 1 for
some vertex xi of Cm . By the similar arguments as above, we
have
∣∣NG−Cm (xi−1)

∣∣ + ∣∣NG−Cm (xi+1)
∣∣ � n − 5 = ∣∣V (G − Cm)

∣∣.

This implies that |NG−Cm (xi−1)| � |V (G − Cm)|/2 or
|NG−Cm (xi+1)| � |V (G − Cm)|/2. Without loss of gener-
ality, assume that |NG−Cm (xi−1)| � |V (G − Cm)|/2. Since
|N(xi) ∩ V (G − Cm)| � |V (G − Cm)|/2 + 1, it follows that
∣∣NG−Cm (xi−1)

∣∣ + ∣∣NG−Cm (xi)
∣∣ �

∣∣V (G − Cm)
∣∣ + 1,

and so there exists u ∈ NG−Cm (xi−1)∩NG−Cm (xi). Therefore,
G contains C3 = xiuxi−1xi , which is a contradiction.

Subcase 1.2. |N(xi) ∩ V (G − Cm)| � |V (G − Cm)|/2 for each
vertex xi of Cm . Since |NG−Cm (xi)| + |NG−Cm (xi+2)| � n − 5
= |V (G − Cm)| in this case and |N(xi) ∩ V (G − Cm)| �
|V (G −Cm)|/2 in this subcase, and |N(xi+2)∩ V (G −Cm)| �
|V (G − Cm)|/2 for every vertex xi of Cm , it follows that
∣∣N(xi) ∩ V (G − Cm)

∣∣ = ∣∣N(xi+2) ∩ V (G − Cm)
∣∣

= ∣∣V (G − Cm)
∣∣/2

for every vertex xi . Furthermore, there must exist x j, x j+1
in the odd cycle C5 such that both x j and x j+1 are adjacent
to a common vertex u of G − C5. Therefore, there is a 3-
cycle C3 = x jux j−1x j in G , which is a contradiction.

Case 2. m = 6. Let C6 = x1x2x3x4x5x6x1.

Subcase 2.1. xi xi+2 ∈ E(G) for some vertex xi in C6. With-
out loss of generality, assume that x1x3 ∈ E(G). By Lem-
ma 2.1(3), we have x4x6 /∈ E(G), and Lemma 2.1(1), we
have x3x6, x1x4 /∈ E(G). Furthermore, we claim that
x2x4, x2x6 /∈ E(G) (for otherwise, if x2x4 ∈ E(G), we get
C4 = x1x3x4x2x1, a contradiction; while if x2x6 ∈ E(G),
we get C4 = x1x3x2x6x1, a contradiction). Then it can
be verified that |NCm (x4)| + |NCm (x6)| � 4. We also have
NG−Cm (x4) ∩ NG−Cm (x6) = ∅ (for otherwise, if u ∈
NG−Cm (x4) ∩ NG−Cm (x6), then C4 = x4x5x6ux4, a contradic-
tion). However then, d(x4) + d(x6) � n − 2, which contra-
dicts the condition of Lemma 2.2.

Subcase 2.2. xi xi+2 /∈ E(G) for any vertex xi in C6. In this
case, it can be verified that |NCm (x4)| + |NCm (x6)| � 4 (by

Lemma 2.1). Using the similar arguments as that used in
subcase 2.1, we can show that NG−Cm (x4)∩ NG−Cm (x6) = ∅.
Furthermore, we can also apply the similar arguments as
subcase 2.1 to obtain d(x4) + d(x6) � n − 2, which contra-
dicts the condition of Lemma 2.2.

Case 3. m = 7. Let C7 = x1x2x3x4x5x6x7x1.

Subcase 3.1. xi xi+2 ∈ E(G) for some vertex xi in C7. Without
loss of generality, assume that x1x3 ∈ E(G). Then we have
x2x4 /∈ E(G) or x7x2 /∈ E(G) (for otherwise, if x2x4, x7x2 ∈
E(G), then we obtain C5: x2x4x5x6x7x2, a contradiction).
We may also assume that x2x4 /∈ E(G . Then x2 can only
be adjacent to x3, x7, x1 of V (C7). (For otherwise, we will
obtain a C5, a contradiction. For example, if x2 is adjacent
to x5, then we obtain a C5: x2x5x6x7x1x2, a contradiction.)
Moreover, x2 and x4 do not have any common neighbor in
G − C7 (for otherwise, if v ∈ V (G − Cm) is adjacent to x2
and x4, then we obtain a C5: x2 vx4x3x1x2, a contradiction).
Thus, it can be verified that d(x2) + d(x4) � n − 2, which
contradicts the condition of Lemma 2.2.

Subcase 3.2. xi xi+2 /∈ E(G) for any vertex xi in C7. In this
case, x2 and x5 do not have any common neighbor in
G − C7, for otherwise, there is a 5-cycle C5 in G . Thus,
we have

min
{

dG−C7 (x2),dG−C7 (x5)
}

�
∣∣V (G − C7)

∣∣/2.

Assume, without loss of generality, that dG−C7 (x5) �
|V (G − C7)|/2. Similarly, x3 and x7 do not have any com-
mon neighbor in G − C7 (for otherwise, there is a C5 in G).
Thus,

min
{

dG−C7 (x3),dG−C7 (x7)
}

�
∣∣V (G − C7)

∣∣/2.

We may assume, without loss of generality, that dG−C7 (x3)

� |V (G − C7)|/2. It then can be verified that dCm (x3) +
dCm (x5) = |{x2, x4, x6}|. We then obtain d(x3) + d(x5) �
n − 2, which contradicts the condition of Lemma 2.2.

Case 4. m � 8. Let Cm = x1x2x3x4 . . . xmx1.

Subcase 4.1. xi xi+2 ∈ E(G) for some vertex xi in Cm . With-
out loss of generality, assume that x1x3 ∈ E(G). In this
case, we have x2x4 /∈ E(G) or x2xm /∈ E(G) (for other-
wise, if x2x4, x2xm ∈ E(G), then we can obtain Cm−2:
x2x4x5 . . . xmx2, a contradiction). Again, we may assume,
without loss of generality, that x2x4 /∈ E(G). Then x4 and
x8 do not have any common neighbor in G − Cm (for oth-
erwise, if v ∈ V (G − Cm) is adjacent to x4 and x8, then we
also obtain a Cm−2: x4 vx8x9 . . . x4, a contradiction). Thus,
we have

min
{

dG−Cm (x4),dG−Cm (x8)
}

�
∣∣V (G − Cm)

∣∣/2.

Without loss of generality, assume that dG−Cm (x4) �
|V (G − Cm)|/2. Similarly, we have x2 and x6 do not have
any common neighbor in G − Cm . Thus,

min
{

dG−Cm (x2),dG−Cm (x6)
}

�
∣∣V (G − Cm)

∣∣/2.
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We may assume that dG−Cm (x2) � |V (G − Cm)|/2. Thus

dG−Cm (x2) + dG−Cm (x4) �
∣∣V (G − Cm)

∣∣/2 + ∣∣V (G − Cm)
∣∣/2

= ∣∣V (G − Cm)
∣∣ (1)

If xr ∈ {x1, x2, . . . , xm} \ {x1, x3} is adjacent to x2, then
xr+2 is not adjacent to x4 (for otherwise, we obtain a
Cm−2: x2xr xr−1 . . . x4xr+2xr+3 . . . x2, a contradiction). Clearly
x2, x4, x5, xm−1 are not adjacent to x2, and x4, x6, x7, x1
are not adjacent to x4, respectively. Hence we have

dCm (x4) � m − ∣∣NCm (x2) \ {x1, x3}
∣∣ − ∣∣{x4, x6, x7, x1}

∣∣

� m − dCm (x2) − 2.

This implies that

dCm (x4) + dCm (x2) � m − 2. (2)

Combining (1) and (2), we have

d(x2) + d(x4) �
∣∣V (G − Cm)

∣∣ + m − 2 � n − 2,

which contradicts the condition of Lemma 2.2.

Subcase 4.2. xi xi+2 /∈ E(G) for every xi in Cm. Observe that
both x4 and x8 do not have any common neighbor in
G − Cm; for otherwise, if v ∈ V (G − Cm) is adjacent to x4
and x8, then we obtain a Cm−2: x4 vx8x9 . . . x4, which is a
contradiction. Thus, we have

dG−Cm (x4) + dG−Cm (x8) �
∣∣V (G − Cm)

∣∣.

This implies that

min
{

dG−Cm (x4),dG−Cm (x8)
}

�
∣∣V (G − Cm)

∣∣/2.

Without loss of generality, assume that dG−Cm (x4) �
|V (G − Cm)|/2. Again, x2 and x6 do not have any com-
mon neighbor in G − Cm . This implies that

min
{

dG−Cm (x2),dG−Cm (x6)
}

�
∣∣V (G − Cm)

∣∣/2.

Without loss of generality, assume that dG−Cm (x2) �
|V (G − Cm)|/2. Hence we have

dG−Cm (x2) + dG−Cm (x4) �
∣∣V (G − Cm)

∣∣/2 + ∣∣V (G − Cm)
∣∣/2

= ∣∣V (G − Cm)
∣∣. (3)

Thus if xr ∈ {x1, x2, . . . , xm} \ {x1, x3} is adjacent to x2,
then xr+2 is not adjacent to x4 (for otherwise, we ob-
tain a Cm−2: x2xr xr−1 . . . x4xr+2xr+3 . . . x2, a contradiction).
Observe that x2, x4, x5, xm−1 are not adjacent to x2, and
x4, x6, x7, x1 are not adjacent to x4, respectively. Hence we
have

dCm (x4) � m − ∣∣NCm (x2) \ {x1, x3}
∣∣ − ∣∣{x4, x6, x7, x1}

∣∣

� m − dCm (x2) − 2,

which implies that

dCm (x4) + dCm (x2) � m − 2. (4)

Combining (3) and (4), we have d(x2) + d(x4) � |V (G −
Cm)| + m − 2 � n − 2, which contradicts the condition of
Lemma 2.2.

This completes the proof of Lemma 2.2. �
In order to prove the below results, we need the fol-

lowing Theorem 2.3 that was proved by Rao Li [3] and
Shengjia Li et al. [4].

Theorem 2.3. Let G be a 2-connected graph of order n � 6
such that d(x) + d(y) � n − 1 for each pair of nonadjacent
vertices x, y in G with d(x, y) = 2, then G is Hamiltonian or
G ∈ Cn ∪Dn.

Lemma 2.4. Let G be a 2-connected Hamiltonian graph of or-
der n � 6 such that d(x) + d(y) � n − 1 for each pair x, y of
nonadjacent vertices in G with d(x, y) = 2. If there is not Cn−1
in G, then

G ∈ {Kn/2,n/2, Kn/2,n/2 − e},
where then n is an even integer.

Proof. Assume, to the contrary, that G /∈ {Kn/2,n/2,

Kn/2,n/2 − e}. Then we have the following claims.

Claim 1. xi xi+3 ∈ E(G) or xi−1xi+2 ∈ E(G) for every vertex xi
in Cn.

Proof. Since G contains no Cn−1, if xh ∈ Cn is adjacent
to xi+2, then xh−1 is not adjacent to xi . Namely, no ver-
tex in N−

Cn
(xi+2) is adjacent xi . Assume that Claim 1

is not true. Then xi xi+3, xi−1xi+2 /∈ E(G). Furthermore,
xi xi−2, xi+2xi+4 /∈ E(G) (for otherwise, if xi xi−2 ∈ E(G),
then xi−2xi xi+1x . . . xi−2 = Cn−1, a contradiction; while
ifxi+2xi+4 ∈ E(G), then xi+2xi+4xi+5 . . . xi+2 = Cn−1, a con-
tradiction). It then can be verified that
∣∣NCn (xi)

∣∣ �
∣∣V (G)

∣∣ − ∣∣N−
Cn

(xi+2)
∣∣ − ∣∣{xi+3, xi−2}

∣∣.

This implies that d(xi) + d(xi+2) � n − 2, which contradicts
the condition of Lemma 2.4. Therefore, Claim 1 is true. �
Claim 2. xi x j /∈ E(G) or xi x j+1 /∈ E(G) for every pair xi, x j of
vertices in Cn.

Proof. If there exists x j in Cn such that xi x j, xi x j+1 ∈ E(G).
By Claim 1 we have xi−1xi+2 ∈ E(G) or xi−2xi+1 ∈ E(G).
This implies that xi−1xi+2xi+3 . . . x j xi x j+1x j+2 . . . xi−1 =
Cn−1 or xi−2xi+1xi+2 . . . x j xi x j+1x j+2 . . . xi−2 = Cn−1, re-
spectively, which is a contradiction. Therefore, Claim 2 is
true. �
Claim 3. {x1, x3, x5, . . . , x2m−1, . . .} and {x2, x4, x6, . . . , x2m,

. . .} are independent sets.

Proof. By Claim 2, we know that d(xi) � n/2 (i = 1,2, . . .)
(for otherwise, if d(xi) > n/2, then there must exist
x j, x j+1 ∈ V (Cn) that are adjacent to xi , which contra-
dicts Claim 2). Since there is no Cn−1, it follows that
xi−1xi+1 /∈ E(G), and so we have d(xi−1) + d(xi+1) � n − 1
(i = 1,2, . . .). This implies that (n − 1)/2 � d(xi) � n/2
(i = 1,2, . . .).

Then for every xi (i = 1,2, . . .), since there is no Cn−1
in G , by Claim 2, there do not exist x j, x j+1 in Cn such that
xi x j, xi x j+1 ∈ E(G). Then obviously we have.

Claim 3.1. If there exist xh, xh+1 that are not adjacent to xi , then
xi will be adjacent to every vertex of {. . . , xh−2m+1, . . . , xh−3,

xh−1, xh+2, xh+4, . . . , xh+2m, . . .}.
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Claim 3.2. If there do not exist xh, xh+1 that are not adjacent
to xi , then when i is even, xi will be adjacent to every vertex of
{x1, x3, x5, . . . , x2m−1, . . .}; while when i is odd, xi will be ad-
jacent to every vertex of {x2, x4, x6, . . . , x2m, . . .}. We consider
two cases.

Case 1. Claim 3.1 does not hold. Then Claim 3 holds.

Case 2. Claim 3.1 holds. There are two subcases.

Subcase 2.1. Claim 3.2 holds. Then clearly there exist
x j, x j+1 such that one vertex satisfying Claim 3.1 and the
other vertex satisfying Claim 3.2. This implies that x j, x j+1
will be adjacent to a common vertex of Cn . It then follows
by Claim 2 that we have a Cn−1, a contradiction.

Subcase 2.2. Claim 3.2 does not hold. In this case, by
Claim 2, if xh and xh+1 are not adjacent to xi ; then both
xh+2 and xh+1 or both xh and xh−1 are not adjacent to xi+1.

In this case, by Claim 1 we have xi−1xi+2 ∈ E(G) or
xi xi+3 ∈ E(G). Then we can obtain a Cn−1, a contradiction.
For example, suppose that xi−1xi+2 ∈ E(G). Since both xh
and xh+1 are not adjacent to xi , and both xh+2 and xh+1 or
both xh and xh−1 are not adjacent to xi+1, without loss of
generality, assume that both xh+2 and xh+1 are not adja-
cent to xi+1. Then we obtain

Cn−1 = xhxh−1 . . . xi+2xi−1xi−2 . . . xh+2xi xi+1xh+3xh.

By Case 1 and Claim 3.2, we have that {x1, x3, x5, . . . ,

x2m−1, . . .} and {x2, x4, x6, . . . , x2m, . . .} are independent
sets. Therefore, Claim 3 is true. �

Since (n − 1)/2 � d(xi) � n/2 for i = 1,2, . . . , it follows
that G ∈ {Kn/2,n/2, Kn/2,n/2 − e}, where then n is an even
integer. This completes the proof of Lemma 2.4. �

Combining Lemma 2.2, Theorem 2.3 and Lemma 2.4, we
have the following main result on pancyclic graphs, which
is, in fact, Theorem 1.4.

Corollary 2.5. If G is a 2-connected graph of order n � 6 such
that d(x) + d(y) � n − 1 for each pair x, y of nonadjacent ver-
tices in G with d(x, y) = 2, then either G is pancyclic or

G ∈ Cn ∪Dn ∪ {Kn/2,n/2, Kn/2,n/2 − e: n is even}.

Note. Since the proof of Theorem 2.3 in [2] and [3] is very
complexity. Their proofs all use the Benhocine–Wojda’ The-
orem in 1987, and the proof of Benhocine–Wojda’ Theo-
rem use two lemmas and Genghua Fan’s Theorem in 1984,
among them the proof of Lemma 2 is 4 pages. Thus, we
now give a simple proof for above Theorem 2.3.

A simple proof of Theorem 2.3. Assume that G is the graph
neither Hamiltonian nor G ∈ Cn ∪Dn satisfying the condi-
tion of Theorem 2.3. Then let Cm be a longest cycle of G ,
and we have the following:

Claim 1. If some vertex u of G − Cm is adjacent to some vertex
xi in Cm, then u will be adjacent to every vertex of G − Cm − u.

Otherwise, if there exists v ∈ V (G − Cm − u) that is not
adjacent to u, then v will be adjacent to xi+1 (otherwise,
if vxi+1 /∈ V (G), since u and xi+1 do not have any common
neighbor vertex in G −Cm , and clearly d(u) = |NG−Cm (u)|+
|NCm (u)| and d(xi+1) � |NG−Cm (xi+1)| + (|V (Cm)| −
|N+

Cm
(u)|), this implies d(u) + d(xi+1) � (|NG−Cm (u)| +

|NG−Cm (xi+1)|)+|NCm (u)|+ (|V (Cm)|− |N+
Cm

(u)|) � |V (G −
Cm − u − v)| + |NCm (u)| + |V (Cm)| − |N+

Cm
(u)| = n − 2, a

contradiction). Similarly, we have that v will be adjacent
to xi+3, xi+5, . . . , and u must be adjacent to xi+2, xi+4, . . . ,
this implies G ∈ Cn ∪Dn , a contradiction.

Claim 2. Let G − Cm = H, then |V (H)| = 1.

Otherwise, if |V (H)| > 1, namely, m � n − 2. Since G is
2-connected, then for any distinct xi+1, x j+1 ∈ N+

Cm
(H) we

have d(xi+1, x j+1) = 2 (otherwise, if there exist xi+1, x j+1 ∈
N+

Cm
(H) then d(xi+1, x j+1) � 3. Let u ∈ V (H) and xi+1 ∈

N+
Cm

(u), since both u and xi+1 does not have any common

neighbor vertex in G − Cm , and clearly x j /∈ N+
Cm

(u) and
x j xi+1 /∈ E(G), so by a similar the proof as Claim 1 we have
d(u) + d(xi+1) � |V (G − Cm − u)| + |NCm (u)| + |V (Cm)| −
|N+

Cm
(u)| − |{x j}| = n − 2, a contradiction).

Then let xi+1, x j+1 ∈ N+
Cm

(H), and {xi+1, xi+2, . . . ,

x j} = C+ and {x j+1, x j+2, . . . , xi} = C− , clearly none of
N+

C+ (x j+1) are adjacent to xi+1, and none of N−
C− (x j+1) are

adjacent to xi+1. Thus, d(xi+1)+d(x j+1) � m−(N+
C+ (x j+1)+

N−
C− (x j+1) − |{x j+1}|) − |{xi+1}| + |NCm (x j+1)| − |V (H)| �

n − 2, a contradiction.

Claim 3. d(u) = (n − 1)/2.

Otherwise, (1) if d(u) > (n−1)/2. Together with Claim 2,
we have that both xh+1, xh+2 in Cn−1 are adjacent to
u, then we get a Hamiltonian cycle, a contradiction.
(2) If d(u) < (n − 1)/2. Since d(xi+1) + d(u) � n − 1 and
d(u)+d(x j+1) � n − 1, this implies d(xi+1) > (n − 1)/2 and
d(x j+1) > (n − 1)/2, so we have d(xi+1) + d(x j+1) > n − 1.
Since Cm is a longest cycle, by a similar arguments as
Claim 2, we have d(xi+1) + d(x j+1) � n − 1, a contradic-
tion.

By d(u) = (n − 1)/2, so N+
Cm

(u) ∪ {u} = {xi+1, xi+3, . . . ,

xi+2r−1, . . . , xi−1, u} is independent vertex set. Clearly for
any xi+2r−1 (r = 1,2, . . .), xi xi+1xi+2 . . . xi+2r−2uxi+2r . . . xi

is also a Cn−1, so we can apply a similar arguments as
above and get that |N(xi+2r−1)| = |V (G)\ (N+

Cm
(u)∪{u})| =

(n − 1)/2 (r = 1,2, . . .), this implies G ∈ Cn ∪Dn , a contra-
diction. This complete the proof of Theorem 2.3. �
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